Summary: | Vibrations are very common phenomenon. It influences structures and generates acoustic noise which might be harmful to human beings. The vibration isolator was invented to reduce the effect from vibrations. However, the behavior of rubber material, which many vibration isolators are made of, is hard to predict. Consequently, vibration tests are needed to obtain the dynamic properties of rubber isolator.In this case, a six-year old LORD 2204-5 rubber isolator provided by Atlas Copco was tested. The aim of this paper is to obtain the FRF (Frequency Response Function) diagram which can describe the property of the rubber material. Moreover, the influence of aging of rubber material on the dynamic properties was studied.As the vibration test should simulate the working environment of the isolators that are both a static load from the structure and a dynamic force from the engine, a new excitation method was designed. The camshaft with the shape of an epitrochoid induced the sinusoidal signal of the isolator and the frame transferred the static load from the hydraulic machine. The artificial aging was performed in a hot air oven in 90°C for 42 hours, which according to Arrhenius equation should be equivalent to six years of natural aging. The vibration isolator was tested again after being aged.The obtained data showed that the aging process decreased the stiffness of the material. The results were corresponding with other studies regarding aging of rubber.
|