Wiener's lemma

In this thesis we study Wiener’s lemma. The classical version of the lemma, whose realm is a Banach algebra, asserts that the pointwise inverse of a nonzero function with absolutely convergent Fourier expansion, also possesses an absolutely convergent Fourier expansion. The main purpose of this thes...

Full description

Bibliographic Details
Main Author: Fredriksson, Henrik
Format: Others
Language:English
Published: Linnéuniversitetet, Institutionen för matematik (MA) 2013
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-27270
id ndltd-UPSALLA1-oai-DiVA.org-lnu-27270
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-lnu-272702013-07-02T04:20:19ZWiener's lemmaengFredriksson, HenrikLinnéuniversitetet, Institutionen för matematik (MA)2013Wiener's lemmaBanach algebraquasi-normp-normsubmultiplicative weight functionIn this thesis we study Wiener’s lemma. The classical version of the lemma, whose realm is a Banach algebra, asserts that the pointwise inverse of a nonzero function with absolutely convergent Fourier expansion, also possesses an absolutely convergent Fourier expansion. The main purpose of this thesis is to investigate the validity inalgebras endowed with a quasi-norm or a p-norm.As a warmup, we prove the classical version of Wiener’s lemma using elemen-tary analysis. Furthermore, we establish results in Banach algebras concerning spectral theory, maximal ideals and multiplicative linear functionals and present a proof Wiener’s lemma using Banach algebra techniques. Let ν be a submultiplicative weight function satisfying the Gelfand-Raikov-Shilov condition. We show that if a nonzero function f has a ν-weighted absolutely convergent Fourier series in a p-normed algebra A. Then 1/f also has a ν-weightedabsolutely convergent Fourier series in A. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-27270application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic Wiener's lemma
Banach algebra
quasi-norm
p-norm
submultiplicative weight function
spellingShingle Wiener's lemma
Banach algebra
quasi-norm
p-norm
submultiplicative weight function
Fredriksson, Henrik
Wiener's lemma
description In this thesis we study Wiener’s lemma. The classical version of the lemma, whose realm is a Banach algebra, asserts that the pointwise inverse of a nonzero function with absolutely convergent Fourier expansion, also possesses an absolutely convergent Fourier expansion. The main purpose of this thesis is to investigate the validity inalgebras endowed with a quasi-norm or a p-norm.As a warmup, we prove the classical version of Wiener’s lemma using elemen-tary analysis. Furthermore, we establish results in Banach algebras concerning spectral theory, maximal ideals and multiplicative linear functionals and present a proof Wiener’s lemma using Banach algebra techniques. Let ν be a submultiplicative weight function satisfying the Gelfand-Raikov-Shilov condition. We show that if a nonzero function f has a ν-weighted absolutely convergent Fourier series in a p-normed algebra A. Then 1/f also has a ν-weightedabsolutely convergent Fourier series in A.
author Fredriksson, Henrik
author_facet Fredriksson, Henrik
author_sort Fredriksson, Henrik
title Wiener's lemma
title_short Wiener's lemma
title_full Wiener's lemma
title_fullStr Wiener's lemma
title_full_unstemmed Wiener's lemma
title_sort wiener's lemma
publisher Linnéuniversitetet, Institutionen för matematik (MA)
publishDate 2013
url http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-27270
work_keys_str_mv AT fredrikssonhenrik wienerslemma
_version_ 1716590311090683904