Wiener's lemma
In this thesis we study Wiener’s lemma. The classical version of the lemma, whose realm is a Banach algebra, asserts that the pointwise inverse of a nonzero function with absolutely convergent Fourier expansion, also possesses an absolutely convergent Fourier expansion. The main purpose of this thes...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
Linnéuniversitetet, Institutionen för matematik (MA)
2013
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-27270 |
id |
ndltd-UPSALLA1-oai-DiVA.org-lnu-27270 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-lnu-272702013-07-02T04:20:19ZWiener's lemmaengFredriksson, HenrikLinnéuniversitetet, Institutionen för matematik (MA)2013Wiener's lemmaBanach algebraquasi-normp-normsubmultiplicative weight functionIn this thesis we study Wiener’s lemma. The classical version of the lemma, whose realm is a Banach algebra, asserts that the pointwise inverse of a nonzero function with absolutely convergent Fourier expansion, also possesses an absolutely convergent Fourier expansion. The main purpose of this thesis is to investigate the validity inalgebras endowed with a quasi-norm or a p-norm.As a warmup, we prove the classical version of Wiener’s lemma using elemen-tary analysis. Furthermore, we establish results in Banach algebras concerning spectral theory, maximal ideals and multiplicative linear functionals and present a proof Wiener’s lemma using Banach algebra techniques. Let ν be a submultiplicative weight function satisfying the Gelfand-Raikov-Shilov condition. We show that if a nonzero function f has a ν-weighted absolutely convergent Fourier series in a p-normed algebra A. Then 1/f also has a ν-weightedabsolutely convergent Fourier series in A. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-27270application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Wiener's lemma Banach algebra quasi-norm p-norm submultiplicative weight function |
spellingShingle |
Wiener's lemma Banach algebra quasi-norm p-norm submultiplicative weight function Fredriksson, Henrik Wiener's lemma |
description |
In this thesis we study Wiener’s lemma. The classical version of the lemma, whose realm is a Banach algebra, asserts that the pointwise inverse of a nonzero function with absolutely convergent Fourier expansion, also possesses an absolutely convergent Fourier expansion. The main purpose of this thesis is to investigate the validity inalgebras endowed with a quasi-norm or a p-norm.As a warmup, we prove the classical version of Wiener’s lemma using elemen-tary analysis. Furthermore, we establish results in Banach algebras concerning spectral theory, maximal ideals and multiplicative linear functionals and present a proof Wiener’s lemma using Banach algebra techniques. Let ν be a submultiplicative weight function satisfying the Gelfand-Raikov-Shilov condition. We show that if a nonzero function f has a ν-weighted absolutely convergent Fourier series in a p-normed algebra A. Then 1/f also has a ν-weightedabsolutely convergent Fourier series in A. |
author |
Fredriksson, Henrik |
author_facet |
Fredriksson, Henrik |
author_sort |
Fredriksson, Henrik |
title |
Wiener's lemma |
title_short |
Wiener's lemma |
title_full |
Wiener's lemma |
title_fullStr |
Wiener's lemma |
title_full_unstemmed |
Wiener's lemma |
title_sort |
wiener's lemma |
publisher |
Linnéuniversitetet, Institutionen för matematik (MA) |
publishDate |
2013 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-27270 |
work_keys_str_mv |
AT fredrikssonhenrik wienerslemma |
_version_ |
1716590311090683904 |