Autonomous Path Following Using Convolutional Networks
Autonomous vehicles have many application possibilities within many different fields like rescue missions, exploring foreign environments or unmanned vehicles etc. For such system to navigate in a safe manner, high requirements of reliability and security must be fulfilled. This master's thesis...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
Linköpings universitet, Datorseende
2012
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-78670 |
id |
ndltd-UPSALLA1-oai-DiVA.org-liu-78670 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-liu-786702013-01-08T13:52:05ZAutonomous Path Following Using Convolutional NetworksengSchmiterlöw, MariaLinköpings universitet, DatorseendeLinköpings universitet, Tekniska högskolan2012Machine LearningAutonomous VehicleConvolutional NetworkPath FollowingAutonomous vehicles have many application possibilities within many different fields like rescue missions, exploring foreign environments or unmanned vehicles etc. For such system to navigate in a safe manner, high requirements of reliability and security must be fulfilled. This master's thesis explores the possibility to use the machine learning algorithm convolutional network on a robotic platform for autonomous path following. The only input to predict the steering signal is a monochromatic image taken by a camera mounted on the robotic car pointing in the steering direction. The convolutional network will learn from demonstrations in a supervised manner. In this thesis three different preprocessing options are evaluated. The evaluation is based on the quadratic error and the number of correctly predicted classes. The results show that the convolutional network has no problem of learning a correct behaviour and scores good result when evaluated on similar data that it has been trained on. The results also show that the preprocessing options are not enough to ensure that the system is environment dependent. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-78670application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Machine Learning Autonomous Vehicle Convolutional Network Path Following |
spellingShingle |
Machine Learning Autonomous Vehicle Convolutional Network Path Following Schmiterlöw, Maria Autonomous Path Following Using Convolutional Networks |
description |
Autonomous vehicles have many application possibilities within many different fields like rescue missions, exploring foreign environments or unmanned vehicles etc. For such system to navigate in a safe manner, high requirements of reliability and security must be fulfilled. This master's thesis explores the possibility to use the machine learning algorithm convolutional network on a robotic platform for autonomous path following. The only input to predict the steering signal is a monochromatic image taken by a camera mounted on the robotic car pointing in the steering direction. The convolutional network will learn from demonstrations in a supervised manner. In this thesis three different preprocessing options are evaluated. The evaluation is based on the quadratic error and the number of correctly predicted classes. The results show that the convolutional network has no problem of learning a correct behaviour and scores good result when evaluated on similar data that it has been trained on. The results also show that the preprocessing options are not enough to ensure that the system is environment dependent. |
author |
Schmiterlöw, Maria |
author_facet |
Schmiterlöw, Maria |
author_sort |
Schmiterlöw, Maria |
title |
Autonomous Path Following Using Convolutional Networks |
title_short |
Autonomous Path Following Using Convolutional Networks |
title_full |
Autonomous Path Following Using Convolutional Networks |
title_fullStr |
Autonomous Path Following Using Convolutional Networks |
title_full_unstemmed |
Autonomous Path Following Using Convolutional Networks |
title_sort |
autonomous path following using convolutional networks |
publisher |
Linköpings universitet, Datorseende |
publishDate |
2012 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-78670 |
work_keys_str_mv |
AT schmiterlowmaria autonomouspathfollowingusingconvolutionalnetworks |
_version_ |
1716531196532359168 |