Quantifying Operability of Working Machines
In working machines the human operator is essential for the performance of the total system. Productivity and energy efficiency are both dependent not only on inherent machine properties and working place conditions, but also on how the operator manoeuvres the machine. In order to operate energy-eff...
Main Author: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
Linköpings universitet, Fluida och mekatroniska system
2011
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-70394 http://nbn-resolving.de/urn:isbn:978-91-7393-087-1 |
id |
ndltd-UPSALLA1-oai-DiVA.org-liu-70394 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
English |
format |
Doctoral Thesis |
sources |
NDLTD |
topic |
Operability machine harmony operator workload control effort simulation operator model human operator working machines construction equipment wheel loaders TECHNOLOGY TEKNIKVETENSKAP |
spellingShingle |
Operability machine harmony operator workload control effort simulation operator model human operator working machines construction equipment wheel loaders TECHNOLOGY TEKNIKVETENSKAP Filla, Reno Quantifying Operability of Working Machines |
description |
In working machines the human operator is essential for the performance of the total system. Productivity and energy efficiency are both dependent not only on inherent machine properties and working place conditions, but also on how the operator manoeuvres the machine. In order to operate energy-efficient the operator has to experience the machine as harmonic. This is important to consider during the development of such working machines. It is necessary to quantify operability and to include this interaction between the human operator and the machine in both the later stages of a development project (where physical prototypes are evaluated by professional test operators) as well as in the earlier stages like concept design (where only virtual prototypes are available). The influence of the human operator is an aspect that is traditionally neglected in dynamic simulations conducted in concept design, because the modelling needs to be extended beyond the technical system. The research presented in this thesis shows two approaches to rule-based simulation models of a wheel loader operator. Both operator models interact with the machine model just as a human operator does with the actual machine. It is demonstrated that both operator models are able to adapt to basic variations in workplace setup and machine capability. A “human element” can thus be introduced into dynamic simulations of working machines, providing more relevant answers with respect to operator-influenced complete-machine properties such as productivity and energy efficiency. While the influence of the human operator is traditionally ignored when evaluating machine properties in the early stages of the product development process, later stages are very reliant on professional test operators using physical prototypes. The presented research demonstrates how the traditional subjective evaluation of a machine’s operability can be complemented by a calculated measure for the operator’s control effort, derived from the recorded control commands of the machine operator. This control effort measure can also be calculated from the control commands of an operator model in a simulation, such as those presented in this thesis. It thus also allows for an assessment of operability already in the concept design phase. In addition, the results of a study of quantifying operator workload by means of measuring psycho-physiological data such as heart rate variability and respiration rate are presented as the first step towards realising workload-adaptive operator assistance functions. Once fully developed, the method itself can also be used as another complement to the traditional subjective evaluations of operability. This approach can then be applied not only in testing of physical prototypes, but also earlier in the product development process in studies on human-in-the-loop simulators. === I arbetsmaskiner spelar föraren en avgörande roll för maskinens prestanda. Såväl produktivitet som energieffektivitet beror inte enbart av maskinens egenskaper och arbetsomgivningen, utan beror också av sättet på vilket föraren manövrerar maskinen. För att främja ett bränslesnålt körsätt ska maskinerna upplevas som harmoniska och det är viktigt att beakta detta vid utvecklingen. Det är nödvändigt att kvantifiera maskinharmonin och att ta hänsyn till interaktionen mellan föraren och maskinen i alla steg av ett utvecklingsprojekt. Detta gäller såväl sena faser, när fysiska prototyper redan har tagits fram och utvärderas av professionella provförare, såväl som tidiga faser som konceptutveckling, när endast virtuella prototyper finns tillgängliga. Förarens inflytande beaktas traditionellt inte i prestandasimuleringar i konceptfasen, eftersom detta innebär att mer än enbart det tekniska systemet måste modelleras. I den forskningen som presenteras här visas två olika regelbaserade modeller av hjullastarförare. Båda förarmodellerna använder maskinmodellen på samma sätt som en verklig förare använder en verklig maskin. Det visas att båda förarmodellerna kan anpassa sig till förändringar både i arbetsomgivningen och i maskinens egenskaper. I och med detta kan man utöka dynamiska simuleringar av arbetsmaskiner med ”ett mänskligt element”. Detta ger bättre resultat vad gäller produktivitet, energieffektivitet och liknande egenskaper som föraren påverkar i kompletta maskiner. Medan man i tidiga faser av produktutvecklingsprocessen traditionellt bortser från förarens inflytande, så är man i senare faser mycket beroende av att professionella provförare testar fysiska prototyper. Den här presenterade forskningen visar hur den traditionella subjektiva förarbedömningen av en maskins körbarhet kan kompletteras med ett mått på förarens ”spakarbete”, som beräknas utifrån en mätning på hur föraren använder sina kontroller för att styra maskinen. Detta mått på ”spakarbete” kan också beräknas utifrån de spaksignaler som genereras av förarmodellerna i en simulering. I och med detta kan en maskins körbarhet undersökas redan under konceptutvecklingen. I avhandlingen redovisas också resultaten från en studie som gjorts i syfte att kvantifiera förarens arbetsbelastning genom att mäta psykofysiologiska mått som variationer i hjärtfrekvens och andningsfrekvens. Studien är ett första steg mot att förverkliga en vision av stödfunktioner i arbetsmaskiner vilka anpassar sig efter förarens momentana arbetsbelastning. En sådan metod att mäta förarens arbetsbelastning kan också användas som ett komplement till den traditionella subjektiva förarbedömningen av en maskins körbarhet. Metoden kan inte bara användas vid provning av fysiska prototyper utan också tidigare i produktutvecklingsprocessen vid studier i avancerade körsimulatorer. === IN ARBETSMASCHINEN spielt der Fahrer eine entscheidende Rolle für die Leistung des gesamten Systems. Produktivität und Energieeffizienz sind nicht nur abhängig von den Grundeigenschaften der Maschine und den Bedingungen am Einsatzort, sondern auch von der Art und Weise wie der Fahrer die Maschine manövreriert. Für eine kraftstoffsparende Fahrweise muss der Fahrer die Maschine als harmonisch erleben. Dies muss bei der Entwicklung beachtet werden. Das Erfassen der Fahrbarkeit und die Berücksichtigung des Zusammenspiels zwischen Fahrer und Maschine ist in allen Phasen der Entwicklung notwendig, sowohl in den späteren Phasen, wenn Prototypen von Erprobungsfahrern ausgewertet werden, als auch in den frühen Phasen wie dem Konzeptentwurf, wenn nur virtuelle Prototypen vorhanden sind. Der Fahrereinfluss wird traditionell in den dynamischen Simulationen während des Konzeptentwurfs vernachlässigt, denn er erfordert die Ausweitung der Modellierung über das technische System hinaus. In dieser Dissertation werden zwei Herangehensweisen zur Erstellung regelbasierter Modelle eines Radladerfahrers aufgezeigt. Beide Fahrermodelle interagieren mit dem Maschinenmodell gleich einem menschlichen Fahrer mit einer realen Maschine. Es wird gezeigt, dass beide Fahrermodelle in der Lage sind, sich auf Änderungen des Einsatzortes und der Maschineneigenschaften anzupassen. Somit kann „ein menschliches Element“ in die dynamische Simulation von Arbeitsmaschinen eingeführt werden, was zu qualitativ besseren Resultaten bezüglich Produktivität, Energieeffizienz und ähnlicher fahrerbeeinflusster Eigenschaften führt. Während man in den frühen Phasen der Produktentwicklung traditionell vom Fahrereinfluss absieht, ist man später sehr auf die Erprobung physischer Prototypmaschinen durch professionelle Testfahrer angewiesen. In dieser Dissertation wird aufgezeigt, wie die traditionell subjektive Bewertung der Fahrbarkeit einer Maschine mit einem Maß der „Steuerungsarbeit“ komplettiert werden kann, berechnet aus der gemessenen Betätigung der dem Fahrer zur Verfügung stehenden Bedienelemente. Dieses Maß der „Steuerungsarbeit“ kann auch aus den Signalen der von uns vorgestellten Fahrermodelle in einer Simulation berechnet werden. Damit kann man die Fahrbarkeit bereits in der Konzeptentwicklung abschätzen. Weiterhin werden die Resultate einer Studie zur Quantifizierung der Fahrerbelastung mithilfe psychophysiologischer Daten wie Veränderungen der Herzfrequenz und Atmungsfrequenz vorgestellt. Diese Studie ist ein erster Schritt zur Entwicklung eines Assistenzsystemes, dass sich an die aktuelle Fahrerbelastung anpasst. Eine solche Messmethode der Fahrerbelastung kan auch zusätzlich zur traditionellen subjektiven Fahrbarkeitseinschätzung angewendet werden – nicht nur bei der Erprobung physischer Prototpyen, sondern auch schon frühzeitig bei Studien auf Fahrsimulatoren. |
author |
Filla, Reno |
author_facet |
Filla, Reno |
author_sort |
Filla, Reno |
title |
Quantifying Operability of Working Machines |
title_short |
Quantifying Operability of Working Machines |
title_full |
Quantifying Operability of Working Machines |
title_fullStr |
Quantifying Operability of Working Machines |
title_full_unstemmed |
Quantifying Operability of Working Machines |
title_sort |
quantifying operability of working machines |
publisher |
Linköpings universitet, Fluida och mekatroniska system |
publishDate |
2011 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-70394 http://nbn-resolving.de/urn:isbn:978-91-7393-087-1 |
work_keys_str_mv |
AT fillareno quantifyingoperabilityofworkingmachines |
_version_ |
1716509585043357696 |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-liu-703942013-01-08T13:07:46ZQuantifying Operability of Working MachinesengFilla, RenoLinköpings universitet, Fluida och mekatroniska systemLinköpings universitet, Tekniska högskolanLinköping : Linköping University Electronic Press2011Operabilitymachine harmonyoperator workloadcontrol effortsimulationoperator modelhuman operatorworking machinesconstruction equipmentwheel loadersTECHNOLOGYTEKNIKVETENSKAPIn working machines the human operator is essential for the performance of the total system. Productivity and energy efficiency are both dependent not only on inherent machine properties and working place conditions, but also on how the operator manoeuvres the machine. In order to operate energy-efficient the operator has to experience the machine as harmonic. This is important to consider during the development of such working machines. It is necessary to quantify operability and to include this interaction between the human operator and the machine in both the later stages of a development project (where physical prototypes are evaluated by professional test operators) as well as in the earlier stages like concept design (where only virtual prototypes are available). The influence of the human operator is an aspect that is traditionally neglected in dynamic simulations conducted in concept design, because the modelling needs to be extended beyond the technical system. The research presented in this thesis shows two approaches to rule-based simulation models of a wheel loader operator. Both operator models interact with the machine model just as a human operator does with the actual machine. It is demonstrated that both operator models are able to adapt to basic variations in workplace setup and machine capability. A “human element” can thus be introduced into dynamic simulations of working machines, providing more relevant answers with respect to operator-influenced complete-machine properties such as productivity and energy efficiency. While the influence of the human operator is traditionally ignored when evaluating machine properties in the early stages of the product development process, later stages are very reliant on professional test operators using physical prototypes. The presented research demonstrates how the traditional subjective evaluation of a machine’s operability can be complemented by a calculated measure for the operator’s control effort, derived from the recorded control commands of the machine operator. This control effort measure can also be calculated from the control commands of an operator model in a simulation, such as those presented in this thesis. It thus also allows for an assessment of operability already in the concept design phase. In addition, the results of a study of quantifying operator workload by means of measuring psycho-physiological data such as heart rate variability and respiration rate are presented as the first step towards realising workload-adaptive operator assistance functions. Once fully developed, the method itself can also be used as another complement to the traditional subjective evaluations of operability. This approach can then be applied not only in testing of physical prototypes, but also earlier in the product development process in studies on human-in-the-loop simulators. I arbetsmaskiner spelar föraren en avgörande roll för maskinens prestanda. Såväl produktivitet som energieffektivitet beror inte enbart av maskinens egenskaper och arbetsomgivningen, utan beror också av sättet på vilket föraren manövrerar maskinen. För att främja ett bränslesnålt körsätt ska maskinerna upplevas som harmoniska och det är viktigt att beakta detta vid utvecklingen. Det är nödvändigt att kvantifiera maskinharmonin och att ta hänsyn till interaktionen mellan föraren och maskinen i alla steg av ett utvecklingsprojekt. Detta gäller såväl sena faser, när fysiska prototyper redan har tagits fram och utvärderas av professionella provförare, såväl som tidiga faser som konceptutveckling, när endast virtuella prototyper finns tillgängliga. Förarens inflytande beaktas traditionellt inte i prestandasimuleringar i konceptfasen, eftersom detta innebär att mer än enbart det tekniska systemet måste modelleras. I den forskningen som presenteras här visas två olika regelbaserade modeller av hjullastarförare. Båda förarmodellerna använder maskinmodellen på samma sätt som en verklig förare använder en verklig maskin. Det visas att båda förarmodellerna kan anpassa sig till förändringar både i arbetsomgivningen och i maskinens egenskaper. I och med detta kan man utöka dynamiska simuleringar av arbetsmaskiner med ”ett mänskligt element”. Detta ger bättre resultat vad gäller produktivitet, energieffektivitet och liknande egenskaper som föraren påverkar i kompletta maskiner. Medan man i tidiga faser av produktutvecklingsprocessen traditionellt bortser från förarens inflytande, så är man i senare faser mycket beroende av att professionella provförare testar fysiska prototyper. Den här presenterade forskningen visar hur den traditionella subjektiva förarbedömningen av en maskins körbarhet kan kompletteras med ett mått på förarens ”spakarbete”, som beräknas utifrån en mätning på hur föraren använder sina kontroller för att styra maskinen. Detta mått på ”spakarbete” kan också beräknas utifrån de spaksignaler som genereras av förarmodellerna i en simulering. I och med detta kan en maskins körbarhet undersökas redan under konceptutvecklingen. I avhandlingen redovisas också resultaten från en studie som gjorts i syfte att kvantifiera förarens arbetsbelastning genom att mäta psykofysiologiska mått som variationer i hjärtfrekvens och andningsfrekvens. Studien är ett första steg mot att förverkliga en vision av stödfunktioner i arbetsmaskiner vilka anpassar sig efter förarens momentana arbetsbelastning. En sådan metod att mäta förarens arbetsbelastning kan också användas som ett komplement till den traditionella subjektiva förarbedömningen av en maskins körbarhet. Metoden kan inte bara användas vid provning av fysiska prototyper utan också tidigare i produktutvecklingsprocessen vid studier i avancerade körsimulatorer. IN ARBETSMASCHINEN spielt der Fahrer eine entscheidende Rolle für die Leistung des gesamten Systems. Produktivität und Energieeffizienz sind nicht nur abhängig von den Grundeigenschaften der Maschine und den Bedingungen am Einsatzort, sondern auch von der Art und Weise wie der Fahrer die Maschine manövreriert. Für eine kraftstoffsparende Fahrweise muss der Fahrer die Maschine als harmonisch erleben. Dies muss bei der Entwicklung beachtet werden. Das Erfassen der Fahrbarkeit und die Berücksichtigung des Zusammenspiels zwischen Fahrer und Maschine ist in allen Phasen der Entwicklung notwendig, sowohl in den späteren Phasen, wenn Prototypen von Erprobungsfahrern ausgewertet werden, als auch in den frühen Phasen wie dem Konzeptentwurf, wenn nur virtuelle Prototypen vorhanden sind. Der Fahrereinfluss wird traditionell in den dynamischen Simulationen während des Konzeptentwurfs vernachlässigt, denn er erfordert die Ausweitung der Modellierung über das technische System hinaus. In dieser Dissertation werden zwei Herangehensweisen zur Erstellung regelbasierter Modelle eines Radladerfahrers aufgezeigt. Beide Fahrermodelle interagieren mit dem Maschinenmodell gleich einem menschlichen Fahrer mit einer realen Maschine. Es wird gezeigt, dass beide Fahrermodelle in der Lage sind, sich auf Änderungen des Einsatzortes und der Maschineneigenschaften anzupassen. Somit kann „ein menschliches Element“ in die dynamische Simulation von Arbeitsmaschinen eingeführt werden, was zu qualitativ besseren Resultaten bezüglich Produktivität, Energieeffizienz und ähnlicher fahrerbeeinflusster Eigenschaften führt. Während man in den frühen Phasen der Produktentwicklung traditionell vom Fahrereinfluss absieht, ist man später sehr auf die Erprobung physischer Prototypmaschinen durch professionelle Testfahrer angewiesen. In dieser Dissertation wird aufgezeigt, wie die traditionell subjektive Bewertung der Fahrbarkeit einer Maschine mit einem Maß der „Steuerungsarbeit“ komplettiert werden kann, berechnet aus der gemessenen Betätigung der dem Fahrer zur Verfügung stehenden Bedienelemente. Dieses Maß der „Steuerungsarbeit“ kann auch aus den Signalen der von uns vorgestellten Fahrermodelle in einer Simulation berechnet werden. Damit kann man die Fahrbarkeit bereits in der Konzeptentwicklung abschätzen. Weiterhin werden die Resultate einer Studie zur Quantifizierung der Fahrerbelastung mithilfe psychophysiologischer Daten wie Veränderungen der Herzfrequenz und Atmungsfrequenz vorgestellt. Diese Studie ist ein erster Schritt zur Entwicklung eines Assistenzsystemes, dass sich an die aktuelle Fahrerbelastung anpasst. Eine solche Messmethode der Fahrerbelastung kan auch zusätzlich zur traditionellen subjektiven Fahrbarkeitseinschätzung angewendet werden – nicht nur bei der Erprobung physischer Prototpyen, sondern auch schon frühzeitig bei Studien auf Fahrsimulatoren. Doctoral thesis, comprehensive summaryinfo:eu-repo/semantics/doctoralThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-70394urn:isbn:978-91-7393-087-1Linköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1390application/pdfinfo:eu-repo/semantics/openAccess |