Image Analysis in the Field of Oil Contamination Monitoring
Monitoring wear particles in lubricating oils allows specialists to evaluate thehealth and functionality of a mechanical system. The main analysis techniquesavailable today are manual particle analysis and automatic optical analysis. Man-ual particle analysis is effective and reliable since the anal...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
Linköpings universitet, Datorseende
2011
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68750 |
Summary: | Monitoring wear particles in lubricating oils allows specialists to evaluate thehealth and functionality of a mechanical system. The main analysis techniquesavailable today are manual particle analysis and automatic optical analysis. Man-ual particle analysis is effective and reliable since the analyst continuously seeswhat is being counted . The drawback is that the technique is quite time demand-ing and dependent of the skills of the analyst. Automatic optical particle countingconstitutes of a closed system not allowing for the objects counted to be observedin real-time. This has resulted in a number of sources of error for the instrument.In this thesis a new method for counting particles based on light microscopywith image analysis is proposed. It has proven to be a fast and effective methodthat eliminates the sources of error of the previously described methods. Thenew method correlates very well with manual analysis which is used as a refer-ence method throughout this study. Size estimation of particles and detectionof metallic particles has also shown to be possible with the current image analy-sis setup. With more advanced software and analysis instrumentation, the imageanalysis method could be further developed to a decision based machine allowingfor declarations about which wear mode is occurring in a mechanical system. |
---|