A practical approach to detection of plant model mismatch for MPC

The number of MPC installations in industry is growing as a reaction to demands of increased efficiency. An MPC controller uses an internal plant model to run real-time predictive optimization of future inputs. If a discrepancy between the internal plant model and the plant exists, control performan...

Full description

Bibliographic Details
Main Author: Carlsson, Rickard
Format: Others
Language:English
Published: Linköpings universitet, Reglerteknik 2010
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56581
Description
Summary:The number of MPC installations in industry is growing as a reaction to demands of increased efficiency. An MPC controller uses an internal plant model to run real-time predictive optimization of future inputs. If a discrepancy between the internal plant model and the plant exists, control performance will be affected. As time from commissioning increases the model accuracy tends to deteriorate. This is natural as the plant changes over time. It is important to detect these changes and re-identify the plant model to maintain control performance over time. A method for identifying Model Plant Mismatch for MPC applications is developed. Focus has been on developing a method that is simple to implement but still robust. The method is able to run in parallel with the process in real time. The efficiency of the method is demonstrated via representative simulation examples.An extension to detection of nonlinear mismatch is also considered, which is important since linear plant models often are used within a small operating range. Since most processes are nonlinear this discrepancy is inevitable and should be detected. === Ökade krav på effektivitet gör att industrin söker efter mer avancerad processtyrning. MPC har växt fram som en kandidat. En MPC regulator änvänder en modell av systemet för att samtidigt som systemet körs utföra en optimering av framtida styrsignaler. Om modellen innehåller felaktigheter kan reglerprestandan påverkas. En modell försämras normalt då tiden från idrifttagning växer eftersom systemet förändras med tiden. Det är av största vikt att upptäcka dessa förändringar och sedan uppdatera modellen för att reglerprestandan inte ska påverkas. Avsikten är att utveckla en metod för att upptäcka modellfel med fokus på att den ska vara enkel att implementera. Det ska även vara möjligt att använda metoden parallellt med en process. För att utvärdera metoden så körs den på ett antal representativa simuleringsexempel. Det har även varit en avsikt att utveckla en metod för detektion av ickelinjära modellfel. Motivet till det är att linjära modeller används för att beskriva ickelinjära processer och då är modellfel naturliga.