Solving the Generalized Assignment Problem by column enumeration based on Lagrangian reduced costs
In this thesis a method for solving the Generalized Assignment Problem (GAP) is described. It is based on a reformulation of the original problem into a Set Partitioning Problem (SPP), in which the columns represent partial solutions to the original problem. For solving this problem, column generati...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
Linköpings universitet, Matematiska institutionen
2006
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5583 |
id |
ndltd-UPSALLA1-oai-DiVA.org-liu-5583 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-liu-55832013-04-19T20:49:43ZSolving the Generalized Assignment Problem by column enumeration based on Lagrangian reduced costsengBrommesson, PeterLinköpings universitet, Matematiska institutionenMatematiska institutionen2006Generalized Assignment ProblemKnapsack ProblemsLagrangian RelaxationOvergenerationEnumerationSet Partitioning Problem.MATHEMATICSMATEMATIKIn this thesis a method for solving the Generalized Assignment Problem (GAP) is described. It is based on a reformulation of the original problem into a Set Partitioning Problem (SPP), in which the columns represent partial solutions to the original problem. For solving this problem, column generation, with systematic overgeneration of columns, is used. Conditions that guarantee that an optimal solution to a restricted SPP is optimal also in the original problem are given. In order to satisfy these conditions, not only columns with the most negative Lagrangian reduced costs need to be generated, but also others; this observation leads to the use of overgeneration of columns. The Generalized Assignment Problem has shown to be NP-hard and therefore efficient algorithms are needed, especially for large problems. The application of the proposed method decomposes GAP into several knapsack problems via Lagrangian relaxation, and enumerates solutions to each of these problems. The solutions obtained from the knapsack problems form a Set Partitioning Problem, which consists of combining one solution from each knapsack problem to obtain a solution to the original problem. The algorithm has been tested on problems with 10 agents and 60 jobs. This leads to 10 knapsack problems, each with 60 variables. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5583application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Generalized Assignment Problem Knapsack Problems Lagrangian Relaxation Overgeneration Enumeration Set Partitioning Problem. MATHEMATICS MATEMATIK |
spellingShingle |
Generalized Assignment Problem Knapsack Problems Lagrangian Relaxation Overgeneration Enumeration Set Partitioning Problem. MATHEMATICS MATEMATIK Brommesson, Peter Solving the Generalized Assignment Problem by column enumeration based on Lagrangian reduced costs |
description |
In this thesis a method for solving the Generalized Assignment Problem (GAP) is described. It is based on a reformulation of the original problem into a Set Partitioning Problem (SPP), in which the columns represent partial solutions to the original problem. For solving this problem, column generation, with systematic overgeneration of columns, is used. Conditions that guarantee that an optimal solution to a restricted SPP is optimal also in the original problem are given. In order to satisfy these conditions, not only columns with the most negative Lagrangian reduced costs need to be generated, but also others; this observation leads to the use of overgeneration of columns. The Generalized Assignment Problem has shown to be NP-hard and therefore efficient algorithms are needed, especially for large problems. The application of the proposed method decomposes GAP into several knapsack problems via Lagrangian relaxation, and enumerates solutions to each of these problems. The solutions obtained from the knapsack problems form a Set Partitioning Problem, which consists of combining one solution from each knapsack problem to obtain a solution to the original problem. The algorithm has been tested on problems with 10 agents and 60 jobs. This leads to 10 knapsack problems, each with 60 variables. |
author |
Brommesson, Peter |
author_facet |
Brommesson, Peter |
author_sort |
Brommesson, Peter |
title |
Solving the Generalized Assignment Problem by column enumeration based on Lagrangian reduced costs |
title_short |
Solving the Generalized Assignment Problem by column enumeration based on Lagrangian reduced costs |
title_full |
Solving the Generalized Assignment Problem by column enumeration based on Lagrangian reduced costs |
title_fullStr |
Solving the Generalized Assignment Problem by column enumeration based on Lagrangian reduced costs |
title_full_unstemmed |
Solving the Generalized Assignment Problem by column enumeration based on Lagrangian reduced costs |
title_sort |
solving the generalized assignment problem by column enumeration based on lagrangian reduced costs |
publisher |
Linköpings universitet, Matematiska institutionen |
publishDate |
2006 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5583 |
work_keys_str_mv |
AT brommessonpeter solvingthegeneralizedassignmentproblembycolumnenumerationbasedonlagrangianreducedcosts |
_version_ |
1716582936740888576 |