Developing methods for distributing particles in electrospun materials

The time when it will be possible to grow complex organs in a lab environment comes closerdue to the rapid progress taking place in the area of biotechnology and tissue engineering.Various tissue engineering methods of creating artificial scaffolds has evolved, one of thosebeing electrospinning. Ele...

Full description

Bibliographic Details
Main Author: Rejmstad, Peter
Format: Others
Language:English
Published: Linköpings universitet, Institutionen för fysik, kemi och biologi 2010
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-54349
id ndltd-UPSALLA1-oai-DiVA.org-liu-54349
record_format oai_dc
collection NDLTD
language English
format Others
sources NDLTD
topic Electrospinning
tissue engineering
biomaterial
polymer
Physics
Fysik
spellingShingle Electrospinning
tissue engineering
biomaterial
polymer
Physics
Fysik
Rejmstad, Peter
Developing methods for distributing particles in electrospun materials
description The time when it will be possible to grow complex organs in a lab environment comes closerdue to the rapid progress taking place in the area of biotechnology and tissue engineering.Various tissue engineering methods of creating artificial scaffolds has evolved, one of thosebeing electrospinning. Electrospun scaffolds are beneficial in tissue engineering applicationsforemost in regard to their body-mimicking structure. Small pore sizes and low porosities mayhowever limit cell infiltration and thereby creation of 3D functional tissues. The issue of cellinfiltration in electrospun constructs such as nonwoven polymer scaffolds for use in tissueengineering may be solved by a method of simultaneous integration i.e. integrating particlesduring the phase of production in the electrospinning process. In this thesis investigation of aproof-of-concept to the idea of in the future distributing living cells within the threedimensionalstructure during the process of electrospinning of a polymeric biomaterial weremade. To be able to conduct simple experiments glass particles with proper sizes are used tosubstitute living cells. During this thesis a novel method called spray electrospinning tookshape enabling a fine distribution of particles in an electrospun material.The work in this thesis shows that there are methods to simultaneously integrate particles inproduction of scaffold materials, one of these composed of spraying particles whileelectrospinning on a rotating collector. The experiments were done in order to compare thedifferent methods; Double, Coaxial and Spray electrospinning pointing out similarities anddifferences between the three. The methods used to characterize the materials include scalemeasurements and SEM image analysis to determine morphology, fibre diameter, layerthickness and distance between particles. Glass particles were used as substitutes for livingcells for the sake of proof of concept which showed that these can successfully be integratedsimultaneously in an electrospun material. However porosity and the number of particles haveto be further optimized for the material to be ready for use in tissue engineering.The time when it will be possible to grow complex organs in a lab environment comes closerdue to the rapid progress taking place in the area of biotechnology and tissue engineering.Various tissue engineering methods of creating artificial scaffolds has evolved, one of thosebeing electrospinning. Electrospun scaffolds are beneficial in tissue engineering applicationsforemost in regard to their body-mimicking structure. Small pore sizes and low porosities mayhowever limit cell infiltration and thereby creation of 3D functional tissues. The issue of cellinfiltration in electrospun constructs such as nonwoven polymer scaffolds for use in tissueengineering may be solved by a method of simultaneous integration i.e. integrating particlesduring the phase of production in the electrospinning process. In this thesis investigation of aproof-of-concept to the idea of in the future distributing living cells within the threedimensionalstructure during the process of electrospinning of a polymeric biomaterial weremade. To be able to conduct simple experiments glass particles with proper sizes are used tosubstitute living cells. During this thesis a novel method called spray electrospinning tookshape enabling a fine distribution of particles in an electrospun material.The work in this thesis shows that there are methods to simultaneously integrate particles inproduction of scaffold materials, one of these composed of spraying particles whileelectrospinning on a rotating collector. The experiments were done in order to compare thedifferent methods; Double, Coaxial and Spray electrospinning pointing out similarities anddifferences between the three. The methods used to characterize the materials include scalemeasurements and SEM image analysis to determine morphology, fibre diameter, layerthickness and distance between particles. Glass particles were used as substitutes for livingcells for the sake of proof of concept which showed that these can successfully be integratedsimultaneously in an electrospun material. However porosity and the number of particles haveto be further optimized for the material to be ready for use in tissue engineering.
author Rejmstad, Peter
author_facet Rejmstad, Peter
author_sort Rejmstad, Peter
title Developing methods for distributing particles in electrospun materials
title_short Developing methods for distributing particles in electrospun materials
title_full Developing methods for distributing particles in electrospun materials
title_fullStr Developing methods for distributing particles in electrospun materials
title_full_unstemmed Developing methods for distributing particles in electrospun materials
title_sort developing methods for distributing particles in electrospun materials
publisher Linköpings universitet, Institutionen för fysik, kemi och biologi
publishDate 2010
url http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-54349
work_keys_str_mv AT rejmstadpeter developingmethodsfordistributingparticlesinelectrospunmaterials
AT rejmstadpeter metodutvecklingfordistributionavpartiklarielektrospunnamaterial
_version_ 1716518704481566720
spelling ndltd-UPSALLA1-oai-DiVA.org-liu-543492013-01-08T13:24:04ZDeveloping methods for distributing particles in electrospun materialsengMetodutveckling för distribution av partiklar i elektrospunna materialRejmstad, PeterLinköpings universitet, Institutionen för fysik, kemi och biologi2010Electrospinningtissue engineeringbiomaterialpolymerPhysicsFysikThe time when it will be possible to grow complex organs in a lab environment comes closerdue to the rapid progress taking place in the area of biotechnology and tissue engineering.Various tissue engineering methods of creating artificial scaffolds has evolved, one of thosebeing electrospinning. Electrospun scaffolds are beneficial in tissue engineering applicationsforemost in regard to their body-mimicking structure. Small pore sizes and low porosities mayhowever limit cell infiltration and thereby creation of 3D functional tissues. The issue of cellinfiltration in electrospun constructs such as nonwoven polymer scaffolds for use in tissueengineering may be solved by a method of simultaneous integration i.e. integrating particlesduring the phase of production in the electrospinning process. In this thesis investigation of aproof-of-concept to the idea of in the future distributing living cells within the threedimensionalstructure during the process of electrospinning of a polymeric biomaterial weremade. To be able to conduct simple experiments glass particles with proper sizes are used tosubstitute living cells. During this thesis a novel method called spray electrospinning tookshape enabling a fine distribution of particles in an electrospun material.The work in this thesis shows that there are methods to simultaneously integrate particles inproduction of scaffold materials, one of these composed of spraying particles whileelectrospinning on a rotating collector. The experiments were done in order to compare thedifferent methods; Double, Coaxial and Spray electrospinning pointing out similarities anddifferences between the three. The methods used to characterize the materials include scalemeasurements and SEM image analysis to determine morphology, fibre diameter, layerthickness and distance between particles. Glass particles were used as substitutes for livingcells for the sake of proof of concept which showed that these can successfully be integratedsimultaneously in an electrospun material. However porosity and the number of particles haveto be further optimized for the material to be ready for use in tissue engineering.The time when it will be possible to grow complex organs in a lab environment comes closerdue to the rapid progress taking place in the area of biotechnology and tissue engineering.Various tissue engineering methods of creating artificial scaffolds has evolved, one of thosebeing electrospinning. Electrospun scaffolds are beneficial in tissue engineering applicationsforemost in regard to their body-mimicking structure. Small pore sizes and low porosities mayhowever limit cell infiltration and thereby creation of 3D functional tissues. The issue of cellinfiltration in electrospun constructs such as nonwoven polymer scaffolds for use in tissueengineering may be solved by a method of simultaneous integration i.e. integrating particlesduring the phase of production in the electrospinning process. In this thesis investigation of aproof-of-concept to the idea of in the future distributing living cells within the threedimensionalstructure during the process of electrospinning of a polymeric biomaterial weremade. To be able to conduct simple experiments glass particles with proper sizes are used tosubstitute living cells. During this thesis a novel method called spray electrospinning tookshape enabling a fine distribution of particles in an electrospun material.The work in this thesis shows that there are methods to simultaneously integrate particles inproduction of scaffold materials, one of these composed of spraying particles whileelectrospinning on a rotating collector. The experiments were done in order to compare thedifferent methods; Double, Coaxial and Spray electrospinning pointing out similarities anddifferences between the three. The methods used to characterize the materials include scalemeasurements and SEM image analysis to determine morphology, fibre diameter, layerthickness and distance between particles. Glass particles were used as substitutes for livingcells for the sake of proof of concept which showed that these can successfully be integratedsimultaneously in an electrospun material. However porosity and the number of particles haveto be further optimized for the material to be ready for use in tissue engineering. Student thesisinfo:eu-repo/semantics/masterThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-54349application/pdfinfo:eu-repo/semantics/openAccess