On the Surface of Conducting Polymers : Electrochemical Switching of Color and Wettability in Conjugated Polymer Devices
Since the discovery in 1977 that conjugated polymers can be doped to achieve almost metallic electronic conduction, the research field of conducting polymers has escalated, with applications such as light emitting diodes, solar cells, thin film transistors, electrochemical transistors, logic circuit...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
Linköpings universitet, Institutionen för teknik och naturvetenskap
2005
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-4268 http://nbn-resolving.de/urn:isbn:91-85457-28-0 |
Summary: | Since the discovery in 1977 that conjugated polymers can be doped to achieve almost metallic electronic conduction, the research field of conducting polymers has escalated, with applications such as light emitting diodes, solar cells, thin film transistors, electrochemical transistors, logic circuits and sensors. The materials can be chemically modified during their synthesis in order to tailor the desired mechanical, electronic and optical properties of the final product. Polymers are also generally possible to process from solution, and regular roll-to-roll printing techniques can therefore be used for manufacturing of electronic components on flexible substrates like plastic or paper. On top of that, the nature of conjugated polymers enables the creation of devices with novel properties, which are not possible to achieve by using inorganic materials such as silicon. The work presented in this thesis mainly focuses on devices that utilize two rather unique properties of conducting polymers. Conducting polymers are generally electrochromic, i.e. they change color upon electrochemical oxidation or reduction, and can therefore be used as both conductor and pixel element in simple organic displays. As a result of the electrochemical reaction, some polymers also alter their surface properties and have proven to be suitable materials for organic electronic wettability switches. Control of surface wettability has applications in such diverse areas as printing techniques, micro-fluidics and biomaterials. The aim of the thesis is to briefly describe the physical and chemical background of the materials used in organic electronic devices. Topics include molecular properties and doping of conjugated polymers, electrochromism, surface tension etc. This slightly theoretical part is followed by a more detailed explanation of device design, functionality and characterization. Finally, a glance into future projects will also be presented. === ISRN/Report code: LiU-TEK-LIC-2005:50 |
---|