Hawkingmassa i Kerr-rumtid

In this thesis we calculate the Hawking mass numerically for surfaces in Kerr spacetime. The Hawking mass is a useful tool for proving the Penrose inequality and the result does not contradict the inequality. It also does not contradict the assumption that the Hawking mass should be monotonic for su...

Full description

Bibliographic Details
Main Author: Jonsson Holm, Jonas
Format: Others
Language:Swedish
Published: Linköpings universitet, Matematiska institutionen 2004
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2533
id ndltd-UPSALLA1-oai-DiVA.org-liu-2533
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-liu-25332013-04-19T20:49:43ZHawkingmassa i Kerr-rumtidsweThe Hawking Mass in Kerr SpacetimeJonsson Holm, JonasLinköpings universitet, Matematiska institutionenMatematiska institutionen2004Applied mathematicsHawking massblack holesquasi-local massNewman-Penrose formalismTillämpad matematikApplied mathematicsTillämpad matematikIn this thesis we calculate the Hawking mass numerically for surfaces in Kerr spacetime. The Hawking mass is a useful tool for proving the Penrose inequality and the result does not contradict the inequality. It also does not contradict the assumption that the Hawking mass should be monotonic for surfaces in Kerr spacetime. The Hawking mass is quasi-local and defined by the spin coefficents of Newman and Penrose, so first we give a discussion about quasi-local quantities and then a short description of the Newman-Penrose formalism. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2533application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language Swedish
format Others
sources NDLTD
topic Applied mathematics
Hawking mass
black holes
quasi-local mass
Newman-Penrose formalism
Tillämpad matematik
Applied mathematics
Tillämpad matematik
spellingShingle Applied mathematics
Hawking mass
black holes
quasi-local mass
Newman-Penrose formalism
Tillämpad matematik
Applied mathematics
Tillämpad matematik
Jonsson Holm, Jonas
Hawkingmassa i Kerr-rumtid
description In this thesis we calculate the Hawking mass numerically for surfaces in Kerr spacetime. The Hawking mass is a useful tool for proving the Penrose inequality and the result does not contradict the inequality. It also does not contradict the assumption that the Hawking mass should be monotonic for surfaces in Kerr spacetime. The Hawking mass is quasi-local and defined by the spin coefficents of Newman and Penrose, so first we give a discussion about quasi-local quantities and then a short description of the Newman-Penrose formalism.
author Jonsson Holm, Jonas
author_facet Jonsson Holm, Jonas
author_sort Jonsson Holm, Jonas
title Hawkingmassa i Kerr-rumtid
title_short Hawkingmassa i Kerr-rumtid
title_full Hawkingmassa i Kerr-rumtid
title_fullStr Hawkingmassa i Kerr-rumtid
title_full_unstemmed Hawkingmassa i Kerr-rumtid
title_sort hawkingmassa i kerr-rumtid
publisher Linköpings universitet, Matematiska institutionen
publishDate 2004
url http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2533
work_keys_str_mv AT jonssonholmjonas hawkingmassaikerrrumtid
AT jonssonholmjonas thehawkingmassinkerrspacetime
_version_ 1716582906176995328