Hawkingmassa i Kerr-rumtid
In this thesis we calculate the Hawking mass numerically for surfaces in Kerr spacetime. The Hawking mass is a useful tool for proving the Penrose inequality and the result does not contradict the inequality. It also does not contradict the assumption that the Hawking mass should be monotonic for su...
Main Author: | |
---|---|
Format: | Others |
Language: | Swedish |
Published: |
Linköpings universitet, Matematiska institutionen
2004
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2533 |
id |
ndltd-UPSALLA1-oai-DiVA.org-liu-2533 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-liu-25332013-04-19T20:49:43ZHawkingmassa i Kerr-rumtidsweThe Hawking Mass in Kerr SpacetimeJonsson Holm, JonasLinköpings universitet, Matematiska institutionenMatematiska institutionen2004Applied mathematicsHawking massblack holesquasi-local massNewman-Penrose formalismTillämpad matematikApplied mathematicsTillämpad matematikIn this thesis we calculate the Hawking mass numerically for surfaces in Kerr spacetime. The Hawking mass is a useful tool for proving the Penrose inequality and the result does not contradict the inequality. It also does not contradict the assumption that the Hawking mass should be monotonic for surfaces in Kerr spacetime. The Hawking mass is quasi-local and defined by the spin coefficents of Newman and Penrose, so first we give a discussion about quasi-local quantities and then a short description of the Newman-Penrose formalism. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2533application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
Swedish |
format |
Others
|
sources |
NDLTD |
topic |
Applied mathematics Hawking mass black holes quasi-local mass Newman-Penrose formalism Tillämpad matematik Applied mathematics Tillämpad matematik |
spellingShingle |
Applied mathematics Hawking mass black holes quasi-local mass Newman-Penrose formalism Tillämpad matematik Applied mathematics Tillämpad matematik Jonsson Holm, Jonas Hawkingmassa i Kerr-rumtid |
description |
In this thesis we calculate the Hawking mass numerically for surfaces in Kerr spacetime. The Hawking mass is a useful tool for proving the Penrose inequality and the result does not contradict the inequality. It also does not contradict the assumption that the Hawking mass should be monotonic for surfaces in Kerr spacetime. The Hawking mass is quasi-local and defined by the spin coefficents of Newman and Penrose, so first we give a discussion about quasi-local quantities and then a short description of the Newman-Penrose formalism. |
author |
Jonsson Holm, Jonas |
author_facet |
Jonsson Holm, Jonas |
author_sort |
Jonsson Holm, Jonas |
title |
Hawkingmassa i Kerr-rumtid |
title_short |
Hawkingmassa i Kerr-rumtid |
title_full |
Hawkingmassa i Kerr-rumtid |
title_fullStr |
Hawkingmassa i Kerr-rumtid |
title_full_unstemmed |
Hawkingmassa i Kerr-rumtid |
title_sort |
hawkingmassa i kerr-rumtid |
publisher |
Linköpings universitet, Matematiska institutionen |
publishDate |
2004 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2533 |
work_keys_str_mv |
AT jonssonholmjonas hawkingmassaikerrrumtid AT jonssonholmjonas thehawkingmassinkerrspacetime |
_version_ |
1716582906176995328 |