An iterative solution method for p-harmonic functions on finite graphs with an implementation
In this paper I give a description and derivation of Dirichlet's problem, a boundary value problem, for p-harmonic functions on graphs and study an iterative method for solving it.The method's convergence is proved and some preliminary results about its speed of convergence are presented.T...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
Linköpings universitet, Matematiska institutionen
2009
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-18162 |
id |
ndltd-UPSALLA1-oai-DiVA.org-liu-18162 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-liu-181622013-01-08T13:33:42ZAn iterative solution method for p-harmonic functions on finite graphs with an implementationengEn iterativ lösningsmetod för p-harmoniska funktioner på ändliga grafer med en implementationAndersson, TomasLinköpings universitet, Matematiska institutionen2009Dirichlet's problemgraphsiterationnumerical solutionp-harmonic functionOther mathematicsÖvrig matematikIn this paper I give a description and derivation of Dirichlet's problem, a boundary value problem, for p-harmonic functions on graphs and study an iterative method for solving it.The method's convergence is proved and some preliminary results about its speed of convergence are presented.There is an implementation accompanying this thesis and a short description of the implementation is included. The implementation will be made available on the internet at http://www.mai.liu.se/~anbjo/pharmgraph/ for as long as possible. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-18162application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Dirichlet's problem graphs iteration numerical solution p-harmonic function Other mathematics Övrig matematik |
spellingShingle |
Dirichlet's problem graphs iteration numerical solution p-harmonic function Other mathematics Övrig matematik Andersson, Tomas An iterative solution method for p-harmonic functions on finite graphs with an implementation |
description |
In this paper I give a description and derivation of Dirichlet's problem, a boundary value problem, for p-harmonic functions on graphs and study an iterative method for solving it.The method's convergence is proved and some preliminary results about its speed of convergence are presented.There is an implementation accompanying this thesis and a short description of the implementation is included. The implementation will be made available on the internet at http://www.mai.liu.se/~anbjo/pharmgraph/ for as long as possible. |
author |
Andersson, Tomas |
author_facet |
Andersson, Tomas |
author_sort |
Andersson, Tomas |
title |
An iterative solution method for p-harmonic functions on finite graphs with an implementation |
title_short |
An iterative solution method for p-harmonic functions on finite graphs with an implementation |
title_full |
An iterative solution method for p-harmonic functions on finite graphs with an implementation |
title_fullStr |
An iterative solution method for p-harmonic functions on finite graphs with an implementation |
title_full_unstemmed |
An iterative solution method for p-harmonic functions on finite graphs with an implementation |
title_sort |
iterative solution method for p-harmonic functions on finite graphs with an implementation |
publisher |
Linköpings universitet, Matematiska institutionen |
publishDate |
2009 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-18162 |
work_keys_str_mv |
AT anderssontomas aniterativesolutionmethodforpharmonicfunctionsonfinitegraphswithanimplementation AT anderssontomas eniterativlosningsmetodforpharmoniskafunktionerpaandligagrafermedenimplementation AT anderssontomas iterativesolutionmethodforpharmonicfunctionsonfinitegraphswithanimplementation |
_version_ |
1716523802814316544 |