An iterative solution method for p-harmonic functions on finite graphs with an implementation

In this paper I give a description and derivation of Dirichlet's problem, a boundary value problem, for p-harmonic functions on graphs and study an iterative method for solving it.The method's convergence is proved and some preliminary results about its speed of convergence are presented.T...

Full description

Bibliographic Details
Main Author: Andersson, Tomas
Format: Others
Language:English
Published: Linköpings universitet, Matematiska institutionen 2009
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-18162
id ndltd-UPSALLA1-oai-DiVA.org-liu-18162
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-liu-181622013-01-08T13:33:42ZAn iterative solution method for p-harmonic functions on finite graphs with an implementationengEn iterativ lösningsmetod för p-harmoniska funktioner på ändliga grafer med en implementationAndersson, TomasLinköpings universitet, Matematiska institutionen2009Dirichlet's problemgraphsiterationnumerical solutionp-harmonic functionOther mathematicsÖvrig matematikIn this paper I give a description and derivation of Dirichlet's problem, a boundary value problem, for p-harmonic functions on graphs and study an iterative method for solving it.The method's convergence is proved and some preliminary results about its speed of convergence are presented.There is an implementation accompanying this thesis and a short description of the implementation is included. The implementation will be made available on the internet at http://www.mai.liu.se/~anbjo/pharmgraph/ for as long as possible. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-18162application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic Dirichlet's problem
graphs
iteration
numerical solution
p-harmonic function
Other mathematics
Övrig matematik
spellingShingle Dirichlet's problem
graphs
iteration
numerical solution
p-harmonic function
Other mathematics
Övrig matematik
Andersson, Tomas
An iterative solution method for p-harmonic functions on finite graphs with an implementation
description In this paper I give a description and derivation of Dirichlet's problem, a boundary value problem, for p-harmonic functions on graphs and study an iterative method for solving it.The method's convergence is proved and some preliminary results about its speed of convergence are presented.There is an implementation accompanying this thesis and a short description of the implementation is included. The implementation will be made available on the internet at http://www.mai.liu.se/~anbjo/pharmgraph/ for as long as possible.
author Andersson, Tomas
author_facet Andersson, Tomas
author_sort Andersson, Tomas
title An iterative solution method for p-harmonic functions on finite graphs with an implementation
title_short An iterative solution method for p-harmonic functions on finite graphs with an implementation
title_full An iterative solution method for p-harmonic functions on finite graphs with an implementation
title_fullStr An iterative solution method for p-harmonic functions on finite graphs with an implementation
title_full_unstemmed An iterative solution method for p-harmonic functions on finite graphs with an implementation
title_sort iterative solution method for p-harmonic functions on finite graphs with an implementation
publisher Linköpings universitet, Matematiska institutionen
publishDate 2009
url http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-18162
work_keys_str_mv AT anderssontomas aniterativesolutionmethodforpharmonicfunctionsonfinitegraphswithanimplementation
AT anderssontomas eniterativlosningsmetodforpharmoniskafunktionerpaandligagrafermedenimplementation
AT anderssontomas iterativesolutionmethodforpharmonicfunctionsonfinitegraphswithanimplementation
_version_ 1716523802814316544