Use of Thermal Imagery for Robust Moving Object Detection
This work proposes a system that utilizes both infrared and visual imagery to create a more robust object detection and classification system. The system consists of two main parts: a moving object detector and a target classifier. The first stage detects moving objects in visible and infrared spect...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
Linköpings universitet, Medie- och Informationsteknik
2021
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177888 |
id |
ndltd-UPSALLA1-oai-DiVA.org-liu-177888 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-liu-1778882021-07-06T05:23:32ZUse of Thermal Imagery for Robust Moving Object DetectionengBergenroth, HannahLinköpings universitet, Medie- och InformationsteknikLinköpings universitet, Tekniska fakulteten2021Moving object detectionbackground subtractionconvolutional neural networkimage fusionMedia and Communication TechnologyMedieteknikThis work proposes a system that utilizes both infrared and visual imagery to create a more robust object detection and classification system. The system consists of two main parts: a moving object detector and a target classifier. The first stage detects moving objects in visible and infrared spectrum using background subtraction based on Gaussian Mixture Models. Low-level fusion is performed to combine the foreground regions in the respective domain. For the second stage, a Convolutional Neural Network (CNN), pre-trained on the ImageNet dataset is used to classify the detected targets into one of the pre-defined classes; human and vehicle. The performance of the proposed object detector is evaluated using multiple video streams recorded in different areas and under various weather conditions, which form a broad basis for testing the suggested method. The accuracy of the classifier is evaluated from experimentally generated images from the moving object detection stage supplemented with publicly available CIFAR-10 and CIFAR-100 datasets. The low-level fusion method shows to be more effective than using either domain separately in terms of detection results. <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177888application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Moving object detection background subtraction convolutional neural network image fusion Media and Communication Technology Medieteknik |
spellingShingle |
Moving object detection background subtraction convolutional neural network image fusion Media and Communication Technology Medieteknik Bergenroth, Hannah Use of Thermal Imagery for Robust Moving Object Detection |
description |
This work proposes a system that utilizes both infrared and visual imagery to create a more robust object detection and classification system. The system consists of two main parts: a moving object detector and a target classifier. The first stage detects moving objects in visible and infrared spectrum using background subtraction based on Gaussian Mixture Models. Low-level fusion is performed to combine the foreground regions in the respective domain. For the second stage, a Convolutional Neural Network (CNN), pre-trained on the ImageNet dataset is used to classify the detected targets into one of the pre-defined classes; human and vehicle. The performance of the proposed object detector is evaluated using multiple video streams recorded in different areas and under various weather conditions, which form a broad basis for testing the suggested method. The accuracy of the classifier is evaluated from experimentally generated images from the moving object detection stage supplemented with publicly available CIFAR-10 and CIFAR-100 datasets. The low-level fusion method shows to be more effective than using either domain separately in terms of detection results. === <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p> |
author |
Bergenroth, Hannah |
author_facet |
Bergenroth, Hannah |
author_sort |
Bergenroth, Hannah |
title |
Use of Thermal Imagery for Robust Moving Object Detection |
title_short |
Use of Thermal Imagery for Robust Moving Object Detection |
title_full |
Use of Thermal Imagery for Robust Moving Object Detection |
title_fullStr |
Use of Thermal Imagery for Robust Moving Object Detection |
title_full_unstemmed |
Use of Thermal Imagery for Robust Moving Object Detection |
title_sort |
use of thermal imagery for robust moving object detection |
publisher |
Linköpings universitet, Medie- och Informationsteknik |
publishDate |
2021 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177888 |
work_keys_str_mv |
AT bergenrothhannah useofthermalimageryforrobustmovingobjectdetection |
_version_ |
1719415819040980992 |