Use of Thermal Imagery for Robust Moving Object Detection

This work proposes a system that utilizes both infrared and visual imagery to create a more robust object detection and classification system. The system consists of two main parts: a moving object detector and a target classifier. The first stage detects moving objects in visible and infrared spect...

Full description

Bibliographic Details
Main Author: Bergenroth, Hannah
Format: Others
Language:English
Published: Linköpings universitet, Medie- och Informationsteknik 2021
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177888
id ndltd-UPSALLA1-oai-DiVA.org-liu-177888
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-liu-1778882021-07-06T05:23:32ZUse of Thermal Imagery for Robust Moving Object DetectionengBergenroth, HannahLinköpings universitet, Medie- och InformationsteknikLinköpings universitet, Tekniska fakulteten2021Moving object detectionbackground subtractionconvolutional neural networkimage fusionMedia and Communication TechnologyMedieteknikThis work proposes a system that utilizes both infrared and visual imagery to create a more robust object detection and classification system. The system consists of two main parts: a moving object detector and a target classifier. The first stage detects moving objects in visible and infrared spectrum using background subtraction based on Gaussian Mixture Models. Low-level fusion is performed to combine the foreground regions in the respective domain. For the second stage, a Convolutional Neural Network (CNN), pre-trained on the ImageNet dataset is used to classify the detected targets into one of the pre-defined classes; human and vehicle. The performance of the proposed object detector is evaluated using multiple video streams recorded in different areas and under various weather conditions, which form a broad basis for testing the suggested method. The accuracy of the classifier is evaluated from experimentally generated images from the moving object detection stage supplemented with publicly available CIFAR-10 and CIFAR-100 datasets. The low-level fusion method shows to be more effective than using either domain separately in terms of detection results. <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177888application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic Moving object detection
background subtraction
convolutional neural network
image fusion
Media and Communication Technology
Medieteknik
spellingShingle Moving object detection
background subtraction
convolutional neural network
image fusion
Media and Communication Technology
Medieteknik
Bergenroth, Hannah
Use of Thermal Imagery for Robust Moving Object Detection
description This work proposes a system that utilizes both infrared and visual imagery to create a more robust object detection and classification system. The system consists of two main parts: a moving object detector and a target classifier. The first stage detects moving objects in visible and infrared spectrum using background subtraction based on Gaussian Mixture Models. Low-level fusion is performed to combine the foreground regions in the respective domain. For the second stage, a Convolutional Neural Network (CNN), pre-trained on the ImageNet dataset is used to classify the detected targets into one of the pre-defined classes; human and vehicle. The performance of the proposed object detector is evaluated using multiple video streams recorded in different areas and under various weather conditions, which form a broad basis for testing the suggested method. The accuracy of the classifier is evaluated from experimentally generated images from the moving object detection stage supplemented with publicly available CIFAR-10 and CIFAR-100 datasets. The low-level fusion method shows to be more effective than using either domain separately in terms of detection results. === <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>
author Bergenroth, Hannah
author_facet Bergenroth, Hannah
author_sort Bergenroth, Hannah
title Use of Thermal Imagery for Robust Moving Object Detection
title_short Use of Thermal Imagery for Robust Moving Object Detection
title_full Use of Thermal Imagery for Robust Moving Object Detection
title_fullStr Use of Thermal Imagery for Robust Moving Object Detection
title_full_unstemmed Use of Thermal Imagery for Robust Moving Object Detection
title_sort use of thermal imagery for robust moving object detection
publisher Linköpings universitet, Medie- och Informationsteknik
publishDate 2021
url http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177888
work_keys_str_mv AT bergenrothhannah useofthermalimageryforrobustmovingobjectdetection
_version_ 1719415819040980992