Morphisms of real calculi from a geometric and algebraic perspective
Noncommutative geometry has over the past four of decades grown into a rich field of study. Novel ideas and concepts are rapidly being developed, and a notable application of the theory outside of pure mathematics is quantum theory. This thesis will focus on a derivation-based approach to noncommuta...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
Linköpings universitet, Algebra, geometri och diskret matematik
2021
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-175740 http://nbn-resolving.de/urn:isbn:9789179296162 |
Summary: | Noncommutative geometry has over the past four of decades grown into a rich field of study. Novel ideas and concepts are rapidly being developed, and a notable application of the theory outside of pure mathematics is quantum theory. This thesis will focus on a derivation-based approach to noncommutative geometry using the framework of real calculi, which is a rather direct approach to the subject. Due to their direct nature, real calculi are useful when studying classical concepts in Riemannian geometry and how they may be generalized to a noncommutative setting. This thesis aims to shed light on algebraic aspects of real calculi by introducing a concept of morphisms of real calculi, which enables the study of real calculi on a structural level. In particular, real calculi over matrix algebras are discussed both from an algebraic and a geometric perspective.Morphisms are also interpreted geometrically, giving a way to develop a noncommutative theory of embeddings. As an example, the noncommutative torus is minimally embedded into the noncommutative 3-sphere. === Ickekommutativ geometri har under de senaste fyra decennierna blivit ett etablerat forskningsområde inom matematiken. Nya idéer och koncept utvecklas i snabb takt, och en viktig fysikalisk tillämpning av teorin är inom kvantteorin. Denna avhandling kommer att fokusera på ett derivationsbaserat tillvägagångssätt inom ickekommutativ geometri där ramverket real calculi används, vilket är ett relativt direkt sätt att studera ämnet på. Eftersom analogin mellan real calculi och klassisk Riemanngeometri är intuitivt klar så är real calculi användbara när man undersöker hur klassiska koncept inom Riemanngeometri kan generaliseras till en ickekommutativ kontext. Denna avhandling ämnar att klargöra vissa algebraiska aspekter av real calculi genom att introducera morfismer för dessa, vilket möjliggör studiet av real calculi på en strukturell nivå. I synnerhet diskuteras real calculi över matrisalgebror från både ett algebraiskt och ett geometriskt perspektiv. Morfismer tolkas även geometriskt, vilket leder till en ickekommutativ teori för inbäddningar. Som ett exempel blir den ickekommutativa torusen minimalt inbäddad i den ickekommutativa 3-sfären. |
---|