Automated Measurements of Liver Fat Using Machine Learning

The purpose of the thesis was to investigate the possibility of using machine learn-ing for automation of liver fat measurements in fat-water magnetic resonancei maging (MRI). The thesis presents methods for texture based liver classificationand Proton Density Fat Fraction (PDFF) regression using mu...

Full description

Bibliographic Details
Main Author: Grundström, Tobias
Format: Others
Language:English
Published: Linköpings universitet, Datorseende 2018
Subjects:
MRI
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151286
id ndltd-UPSALLA1-oai-DiVA.org-liu-151286
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-liu-1512862018-09-19T05:57:29ZAutomated Measurements of Liver Fat Using Machine LearningengGrundström, TobiasLinköpings universitet, Datorseende2018MRIimage processingmachine learningSignal ProcessingSignalbehandlingThe purpose of the thesis was to investigate the possibility of using machine learn-ing for automation of liver fat measurements in fat-water magnetic resonancei maging (MRI). The thesis presents methods for texture based liver classificationand Proton Density Fat Fraction (PDFF) regression using multi-layer perceptrons utilizing 2D and 3D textural image features. The first proposed method was a data classification method with the goal to distinguish between suitable andunsuitable regions to measure PDFF in. The second proposed method was a combined classification and regression method where the classification distinguishes between liver and non-liver tissue. The goal of the regression model was to predict the difference d = pdff mean − pdff ROI between the manual ground truth mean and the fat fraction of the active Region of Interest (ROI).Tests were performed on varying sizes of Image Feature Regions (froi) and combinations of image features on both of the proposed methods. The tests showed that 3D measurements using image features from discrete wavelet transforms produced measurements similar to the manual fat measurements. The first method resulted in lower relative errors while the second method had a higher method agreement compared to manual measurements. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151286application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic MRI
image processing
machine learning
Signal Processing
Signalbehandling
spellingShingle MRI
image processing
machine learning
Signal Processing
Signalbehandling
Grundström, Tobias
Automated Measurements of Liver Fat Using Machine Learning
description The purpose of the thesis was to investigate the possibility of using machine learn-ing for automation of liver fat measurements in fat-water magnetic resonancei maging (MRI). The thesis presents methods for texture based liver classificationand Proton Density Fat Fraction (PDFF) regression using multi-layer perceptrons utilizing 2D and 3D textural image features. The first proposed method was a data classification method with the goal to distinguish between suitable andunsuitable regions to measure PDFF in. The second proposed method was a combined classification and regression method where the classification distinguishes between liver and non-liver tissue. The goal of the regression model was to predict the difference d = pdff mean − pdff ROI between the manual ground truth mean and the fat fraction of the active Region of Interest (ROI).Tests were performed on varying sizes of Image Feature Regions (froi) and combinations of image features on both of the proposed methods. The tests showed that 3D measurements using image features from discrete wavelet transforms produced measurements similar to the manual fat measurements. The first method resulted in lower relative errors while the second method had a higher method agreement compared to manual measurements.
author Grundström, Tobias
author_facet Grundström, Tobias
author_sort Grundström, Tobias
title Automated Measurements of Liver Fat Using Machine Learning
title_short Automated Measurements of Liver Fat Using Machine Learning
title_full Automated Measurements of Liver Fat Using Machine Learning
title_fullStr Automated Measurements of Liver Fat Using Machine Learning
title_full_unstemmed Automated Measurements of Liver Fat Using Machine Learning
title_sort automated measurements of liver fat using machine learning
publisher Linköpings universitet, Datorseende
publishDate 2018
url http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151286
work_keys_str_mv AT grundstromtobias automatedmeasurementsofliverfatusingmachinelearning
_version_ 1718734297895010304