Summary: | The objective of this master’s thesis work is to evaluate the potential benefit of a superpixel preprocessing step for general object detection in a traffic environment. The various effects of different superpixel parameters on object detection performance, as well as the benefit of including depth information when generating the superpixels are investigated. In this work, three superpixel algorithms are implemented and compared, including a proposal for an improved version of the popular Spectral Linear Iterative Clustering superpixel algorithm (SLIC). The proposed improved algorithm utilises a coarse-to-fine approach which outperforms the original SLIC for high-resolution images. An object detection algorithm is also implemented and evaluated. The algorithm makes use of depth information obtained by a stereo camera to extract superpixels corresponding to foreground objects in the image. Hierarchical clustering is then applied, with the segments formed by the clustered superpixels indicating potential objects in the input image. The object detection algorithm managed to detect on average 58% of the objects present in the chosen dataset. It performed especially well for detecting pedestrians or other objects close to the car. Altering the density distribution of the superpixels in the image yielded an increase in detection rate, and could be achieved both with or without utilising depth information. It was also shown that the use of superpixels greatly reduces the amount of computations needed for the algorithm, indicating that a real-time implementation is feasible.
|