Modeling of Magnetic Fields and Extended Objects for Localization Applications

The level of automation in our society is ever increasing. Technologies like self-driving cars, virtual reality, and fully autonomous robots, which all were unimaginable a few decades ago, are realizable today, and will become standard consumer products in the future. These technologies depend upon...

Full description

Bibliographic Details
Main Author: Wahlström, Niklas
Format: Doctoral Thesis
Language:English
Published: Linköpings universitet, Reglerteknik 2015
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122396
http://nbn-resolving.de/urn:isbn:978-91-7685-903-2 (print)
id ndltd-UPSALLA1-oai-DiVA.org-liu-122396
record_format oai_dc
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Localization
magnetic tracking
extended target tracking
signal processing
machine learning
Gaussian processes
deep dynamical model
discretization
spellingShingle Localization
magnetic tracking
extended target tracking
signal processing
machine learning
Gaussian processes
deep dynamical model
discretization
Wahlström, Niklas
Modeling of Magnetic Fields and Extended Objects for Localization Applications
description The level of automation in our society is ever increasing. Technologies like self-driving cars, virtual reality, and fully autonomous robots, which all were unimaginable a few decades ago, are realizable today, and will become standard consumer products in the future. These technologies depend upon autonomous localization and situation awareness where careful processing of sensory data is required. To increase efficiency, robustness and reliability, appropriate models for these data are needed.In this thesis, such models are analyzed within three different application areas, namely (1) magnetic localization, (2) extended target tracking, and (3) autonomous learning from raw pixel information. Magnetic localization is based on one or more magnetometers measuring the induced magnetic field from magnetic objects. In this thesis we present a model for determining the position and the orientation of small magnets with an accuracy of a few millimeters. This enables three-dimensional interaction with computer programs that cannot be handled with other localization techniques. Further, an additional model is proposed for detecting wrong-way drivers on highways based on sensor data from magnetometers deployed in the vicinity of traffic lanes. Models for mapping complex magnetic environments are also analyzed. Such magnetic maps can be used for indoor localization where other systems, such as GPS, do not work. In the second application area, models for tracking objects from laser range sensor data are analyzed. The target shape is modeled with a Gaussian process and is estimated jointly with target position and orientation. The resulting algorithm is capable of tracking various objects with different shapes within the same surveillance region. In the third application area, autonomous learning based on high-dimensional sensor data is considered. In this thesis, we consider one instance of this challenge, the so-called pixels to torques problem, where an agent must learn a closed-loop control policy from pixel information only. To solve this problem, high-dimensional time series are described using a low-dimensional dynamical model. Techniques from machine learning together with standard tools from control theory are used to autonomously design a controller for the system without any prior knowledge. System models used in the applications above are often provided in continuous time. However, a major part of the applied theory is developed for discrete-time systems. Discretization of continuous-time models is hence fundamental. Therefore, this thesis ends with a method for performing such discretization using Lyapunov equations together with analytical solutions, enabling efficient implementation in software. === Hur kan man få en dator att följa pucken i bordshockey för att sammanställa match-statistik, en pensel att måla virtuella vattenfärger, en skalpell för att digitalisera patologi, eller ett multi-verktyg för att skulptera i 3D?  Detta är fyra applikationer som bygger på den patentsökta algoritm som utvecklats i avhandlingen. Metoden bygger på att man gömmer en liten magnet i verktyget, och placerar ut ett antal tre-axliga magnetometrar - av samma slag som vi har i våra smarta telefoner - i ett nätverk kring vår arbetsyta. Magnetens magnetfält ger upphov till en unik signatur i sensorerna som gör att man kan beräkna magnetens position i tre frihetsgrader, samt två av dess vinklar. Avhandlingen tar fram ett komplett ramverk för dessa beräkningar och tillhörande analys. En annan tillämpning som studerats baserat på denna princip är detektion och klassificering av fordon. I ett samarbete med Luleå tekniska högskola med projektpartners har en algoritm tagits fram för att klassificera i vilken riktning fordonen passerar enbart med hjälp av mätningar från en två-axlig magnetometer. Tester utanför Luleå visar på i princip 100% korrekt klassificering. Att se ett fordon som en struktur av magnetiska dipoler i stället för en enda stor, är ett exempel på ett så kallat utsträckt mål. I klassisk teori för att följa flygplan, båtar mm, beskrivs målen som en punkt, men många av dagens allt noggrannare sensorer genererar flera mätningar från samma mål. Genom att ge målen en geometrisk utsträckning eller andra attribut (som dipols-strukturer) kan man inte enbart förbättra målföljnings-algoritmerna och använda sensordata effektivare, utan också klassificera målen effektivare. I avhandlingen föreslås en modell som beskriver den geometriska formen på ett mer flexibelt sätt och med en högre detaljnivå än tidigare modeller i litteraturen. En helt annan tillämpning som studerats är att använda maskininlärning för att lära en dator att styra en plan pendel till önskad position enbart genom att analysera pixlarna i video-bilder. Metodiken går ut på att låta datorn få studera mängder av bilder på en pendel, i det här fallet 1000-tals, för att förstå dynamiken av hur en känd styrsignal påverkar pendeln, för att sedan kunna agera autonomt när inlärningsfasen är klar. Tekniken skulle i förlängningen kunna användas för att utveckla autonoma robotar. === <p>In the electronic version figure 2.2a is corrected.</p> === COOPLOC
author Wahlström, Niklas
author_facet Wahlström, Niklas
author_sort Wahlström, Niklas
title Modeling of Magnetic Fields and Extended Objects for Localization Applications
title_short Modeling of Magnetic Fields and Extended Objects for Localization Applications
title_full Modeling of Magnetic Fields and Extended Objects for Localization Applications
title_fullStr Modeling of Magnetic Fields and Extended Objects for Localization Applications
title_full_unstemmed Modeling of Magnetic Fields and Extended Objects for Localization Applications
title_sort modeling of magnetic fields and extended objects for localization applications
publisher Linköpings universitet, Reglerteknik
publishDate 2015
url http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122396
http://nbn-resolving.de/urn:isbn:978-91-7685-903-2 (print)
work_keys_str_mv AT wahlstromniklas modelingofmagneticfieldsandextendedobjectsforlocalizationapplications
_version_ 1718140375459168256
spelling ndltd-UPSALLA1-oai-DiVA.org-liu-1223962015-12-01T04:53:01ZModeling of Magnetic Fields and Extended Objects for Localization ApplicationsengWahlström, NiklasLinköpings universitet, ReglerteknikLinköpings universitet, Tekniska fakulteten2015Localizationmagnetic trackingextended target trackingsignal processingmachine learningGaussian processesdeep dynamical modeldiscretizationThe level of automation in our society is ever increasing. Technologies like self-driving cars, virtual reality, and fully autonomous robots, which all were unimaginable a few decades ago, are realizable today, and will become standard consumer products in the future. These technologies depend upon autonomous localization and situation awareness where careful processing of sensory data is required. To increase efficiency, robustness and reliability, appropriate models for these data are needed.In this thesis, such models are analyzed within three different application areas, namely (1) magnetic localization, (2) extended target tracking, and (3) autonomous learning from raw pixel information. Magnetic localization is based on one or more magnetometers measuring the induced magnetic field from magnetic objects. In this thesis we present a model for determining the position and the orientation of small magnets with an accuracy of a few millimeters. This enables three-dimensional interaction with computer programs that cannot be handled with other localization techniques. Further, an additional model is proposed for detecting wrong-way drivers on highways based on sensor data from magnetometers deployed in the vicinity of traffic lanes. Models for mapping complex magnetic environments are also analyzed. Such magnetic maps can be used for indoor localization where other systems, such as GPS, do not work. In the second application area, models for tracking objects from laser range sensor data are analyzed. The target shape is modeled with a Gaussian process and is estimated jointly with target position and orientation. The resulting algorithm is capable of tracking various objects with different shapes within the same surveillance region. In the third application area, autonomous learning based on high-dimensional sensor data is considered. In this thesis, we consider one instance of this challenge, the so-called pixels to torques problem, where an agent must learn a closed-loop control policy from pixel information only. To solve this problem, high-dimensional time series are described using a low-dimensional dynamical model. Techniques from machine learning together with standard tools from control theory are used to autonomously design a controller for the system without any prior knowledge. System models used in the applications above are often provided in continuous time. However, a major part of the applied theory is developed for discrete-time systems. Discretization of continuous-time models is hence fundamental. Therefore, this thesis ends with a method for performing such discretization using Lyapunov equations together with analytical solutions, enabling efficient implementation in software. Hur kan man få en dator att följa pucken i bordshockey för att sammanställa match-statistik, en pensel att måla virtuella vattenfärger, en skalpell för att digitalisera patologi, eller ett multi-verktyg för att skulptera i 3D?  Detta är fyra applikationer som bygger på den patentsökta algoritm som utvecklats i avhandlingen. Metoden bygger på att man gömmer en liten magnet i verktyget, och placerar ut ett antal tre-axliga magnetometrar - av samma slag som vi har i våra smarta telefoner - i ett nätverk kring vår arbetsyta. Magnetens magnetfält ger upphov till en unik signatur i sensorerna som gör att man kan beräkna magnetens position i tre frihetsgrader, samt två av dess vinklar. Avhandlingen tar fram ett komplett ramverk för dessa beräkningar och tillhörande analys. En annan tillämpning som studerats baserat på denna princip är detektion och klassificering av fordon. I ett samarbete med Luleå tekniska högskola med projektpartners har en algoritm tagits fram för att klassificera i vilken riktning fordonen passerar enbart med hjälp av mätningar från en två-axlig magnetometer. Tester utanför Luleå visar på i princip 100% korrekt klassificering. Att se ett fordon som en struktur av magnetiska dipoler i stället för en enda stor, är ett exempel på ett så kallat utsträckt mål. I klassisk teori för att följa flygplan, båtar mm, beskrivs målen som en punkt, men många av dagens allt noggrannare sensorer genererar flera mätningar från samma mål. Genom att ge målen en geometrisk utsträckning eller andra attribut (som dipols-strukturer) kan man inte enbart förbättra målföljnings-algoritmerna och använda sensordata effektivare, utan också klassificera målen effektivare. I avhandlingen föreslås en modell som beskriver den geometriska formen på ett mer flexibelt sätt och med en högre detaljnivå än tidigare modeller i litteraturen. En helt annan tillämpning som studerats är att använda maskininlärning för att lära en dator att styra en plan pendel till önskad position enbart genom att analysera pixlarna i video-bilder. Metodiken går ut på att låta datorn få studera mängder av bilder på en pendel, i det här fallet 1000-tals, för att förstå dynamiken av hur en känd styrsignal påverkar pendeln, för att sedan kunna agera autonomt när inlärningsfasen är klar. Tekniken skulle i förlängningen kunna användas för att utveckla autonoma robotar. <p>In the electronic version figure 2.2a is corrected.</p>COOPLOCDoctoral thesis, comprehensive summaryinfo:eu-repo/semantics/doctoralThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122396urn:isbn:978-91-7685-903-2 (print)doi:10.3384/diss.diva-122396Linköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1723application/pdfinfo:eu-repo/semantics/openAccess