The Importance of the TSHR-gene in Domestic Chicken

Thyroid hormones are known to be important in several processes in chicken, such as growth, metabolism and reproductive system. In previous studies the thyroid stimulating hormone receptor (TSHR)-gene has been identified as a target for a selective sweep in commercial breeds of chicken such as broil...

Full description

Bibliographic Details
Main Author: Johnsen, Hanna
Format: Others
Language:English
Published: Linköpings universitet, Biologi 2014
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-103687
Description
Summary:Thyroid hormones are known to be important in several processes in chicken, such as growth, metabolism and reproductive system. In previous studies the thyroid stimulating hormone receptor (TSHR)-gene has been identified as a target for a selective sweep in commercial breeds of chicken such as broiler and White Leghorn. The evolution of domesticated species can be split into three periods. The first is the natural selection in their natural habitat, the second the beginning of the domestication process, when humans started to tame and breed the wild animals and the third is when animals were bred for commercial interests such as egg laying properties and meat production in chicken. Landraces, which are domesticated but not commercially bred races, are a great resource for identifying during which period a specific gene, which differs between wild type and commercial bred breeds, were selected. In this study Swedish landrace chickens were used in order to analyze the importance of a mutation in the TSHR-gene in the domestication process. The results of this study gave that all, except two individuals from the Bohuslän-Dals svarthöna were homozygous for the mutation known from commercial breeds. The two individuals from Bohuslän-Dals svarthöna were both heterozygous for the mutation. These results suggest that the TSHR mutation is important for the domestication process and were already more or less fixed at the commencement of commercial breeding. The mutation is thought to be dominant and to have an inhibitory impact on the TSHR activity. This might result in hypothyroidism which would make alterations in the reproductive system. This is plausible because the constant availability of food in captivity makes the seasonal reproductive system no longer critical for survival of progeny.