Large-Scale Optimization Methods with Application to Design of Filter Networks
Nowadays, large-scale optimization problems are among those most challenging. Any progress in developing methods for large-scale optimization results in solving important applied problems more effectively. Limited memory methods and trust-region methods represent two ecient approaches used for solvi...
Main Author: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
Linköpings universitet, Optimeringslära
2014
|
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-103646 http://nbn-resolving.de/urn:isbn:978-91-7519-456-1 (print) |
id |
ndltd-UPSALLA1-oai-DiVA.org-liu-103646 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-liu-1036462015-06-03T05:02:09ZLarge-Scale Optimization Methods with Application to Design of Filter NetworksengZikrin, SpartakLinköpings universitet, OptimeringsläraLinköpings universitet, Tekniska högskolanLinköping2014Nowadays, large-scale optimization problems are among those most challenging. Any progress in developing methods for large-scale optimization results in solving important applied problems more effectively. Limited memory methods and trust-region methods represent two ecient approaches used for solving unconstrained optimization problems. A straightforward combination of them deteriorates the efficiency of the former approach, especially in the case of large-scale problems. For this reason, the limited memory methods are usually combined with a line search. We develop new limited memory trust-region algorithms for large-scale unconstrained optimization. They are competitive with the traditional limited memory line-search algorithms. In this thesis, we consider applied optimization problems originating from the design of lter networks. Filter networks represent an ecient tool in medical image processing. It is based on replacing a set of dense multidimensional lters by a network of smaller sparse lters called sub-filters. This allows for improving image processing time, while maintaining image quality and the robustness of image processing. Design of lter networks is a nontrivial procedure that involves three steps: 1) choosing the network structure, 2) choosing the sparsity pattern of each sub-filter and 3) optimizing the nonzero coecient values. So far, steps 1 and 2 were mainly based on the individual expertise of network designers and their intuition. Given a sparsity pattern, the choice of the coecients at stage 3 is related to solving a weighted nonlinear least-squares problem. Even in the case of sequentially connected lters, the resulting problem is of a multilinear least-squares (MLLS) type, which is a non-convex large-scale optimization problem. This is a very dicult global optimization problem that may have a large number of local minima, and each of them is singular and non-isolated. It is characterized by a large number of decision variables, especially for 3D and 4D lters. We develop an effective global optimization approach to solving the MLLS problem that reduces signicantly the computational time. Furthermore, we develop efficient methods for optimizing sparsity of individual sub-filters in lter networks of a more general structure. This approach offers practitioners a means of nding a proper trade-o between the image processing quality and time. It allows also for improving the network structure, which makes automated some stages of designing lter networks. Doctoral thesis, comprehensive summaryinfo:eu-repo/semantics/doctoralThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-103646urn:isbn:978-91-7519-456-1 (print)doi:10.3384/diss.diva-103646Linköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1561application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Doctoral Thesis |
sources |
NDLTD |
description |
Nowadays, large-scale optimization problems are among those most challenging. Any progress in developing methods for large-scale optimization results in solving important applied problems more effectively. Limited memory methods and trust-region methods represent two ecient approaches used for solving unconstrained optimization problems. A straightforward combination of them deteriorates the efficiency of the former approach, especially in the case of large-scale problems. For this reason, the limited memory methods are usually combined with a line search. We develop new limited memory trust-region algorithms for large-scale unconstrained optimization. They are competitive with the traditional limited memory line-search algorithms. In this thesis, we consider applied optimization problems originating from the design of lter networks. Filter networks represent an ecient tool in medical image processing. It is based on replacing a set of dense multidimensional lters by a network of smaller sparse lters called sub-filters. This allows for improving image processing time, while maintaining image quality and the robustness of image processing. Design of lter networks is a nontrivial procedure that involves three steps: 1) choosing the network structure, 2) choosing the sparsity pattern of each sub-filter and 3) optimizing the nonzero coecient values. So far, steps 1 and 2 were mainly based on the individual expertise of network designers and their intuition. Given a sparsity pattern, the choice of the coecients at stage 3 is related to solving a weighted nonlinear least-squares problem. Even in the case of sequentially connected lters, the resulting problem is of a multilinear least-squares (MLLS) type, which is a non-convex large-scale optimization problem. This is a very dicult global optimization problem that may have a large number of local minima, and each of them is singular and non-isolated. It is characterized by a large number of decision variables, especially for 3D and 4D lters. We develop an effective global optimization approach to solving the MLLS problem that reduces signicantly the computational time. Furthermore, we develop efficient methods for optimizing sparsity of individual sub-filters in lter networks of a more general structure. This approach offers practitioners a means of nding a proper trade-o between the image processing quality and time. It allows also for improving the network structure, which makes automated some stages of designing lter networks. |
author |
Zikrin, Spartak |
spellingShingle |
Zikrin, Spartak Large-Scale Optimization Methods with Application to Design of Filter Networks |
author_facet |
Zikrin, Spartak |
author_sort |
Zikrin, Spartak |
title |
Large-Scale Optimization Methods with Application to Design of Filter Networks |
title_short |
Large-Scale Optimization Methods with Application to Design of Filter Networks |
title_full |
Large-Scale Optimization Methods with Application to Design of Filter Networks |
title_fullStr |
Large-Scale Optimization Methods with Application to Design of Filter Networks |
title_full_unstemmed |
Large-Scale Optimization Methods with Application to Design of Filter Networks |
title_sort |
large-scale optimization methods with application to design of filter networks |
publisher |
Linköpings universitet, Optimeringslära |
publishDate |
2014 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-103646 http://nbn-resolving.de/urn:isbn:978-91-7519-456-1 (print) |
work_keys_str_mv |
AT zikrinspartak largescaleoptimizationmethodswithapplicationtodesignoffilternetworks |
_version_ |
1716805105073782784 |