Summary: | Event-triggered control is a recent approach in control theory which aims at reducing the communication load in networked control systems by adapting the communication among the components to the current needs. In more detail, the information exchange over the feedback link only takes place if certain event conditions, that guarantee a desired control performance, are satisfied. This thesis analyzes the consequences of actuator saturation on the stability of the event-triggered control loop. Based on linear matrix inequalities, stability criteria have been derived which can be used to determine regions in the state space that guarantee a stable behavior. Furthermore, the existence of a lower bound on the minimum inter-event time is shown. Due to integrator windup, actuator saturation may severely degrade the performance of the event-triggered closed-loop system. In order to overcome this problem, the stability criteria have been extended by incorporating a static anti-windup structure. Finally, the effects of transmission delays in the feedback link are analyzed and a procedure to deal with their consequences is proposed. The results are illustrated by simulations and by experiments with a wirelessly controlled first-order tank system.
|