Interactions of cellulose and model surfaces

The focus of this thesis is fundamental surface force and friction studies of silica and cellulose surfaces, performed mainly with the atomic force microscope (AFM). The normal interactions between model cellulose surfaces have been found to consist of a longer range double layer force with a short...

Full description

Bibliographic Details
Main Author: Stiernstedt, Johanna
Format: Doctoral Thesis
Language:English
Published: KTH, Ytkemi 2006
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-619
http://nbn-resolving.de/urn:isbn:91-7178-260-5
Description
Summary:The focus of this thesis is fundamental surface force and friction studies of silica and cellulose surfaces, performed mainly with the atomic force microscope (AFM). The normal interactions between model cellulose surfaces have been found to consist of a longer range double layer force with a short range steric interaction, the nature of which is extensively discussed. Both the surface charge and range of the steric force depend on the type of cellulose substrate used, as does the magnitude of the adhesion. Studies of friction on the same surfaces reveal that surface roughness is the determining factor for the friction coefficient, with which it increases monotonically. The absolute value, however, is determined by the surface chemistry. The above is illustrated by studies of the effect of adsorbed xyloglucan, a prospective paper additive, which is found in the cell wall of all plants. Xyloglucan is like cellulose a poly- saccharide but the effect of its adsorption was to reduce the friction significantly, while following the identical trend with surface roughness. Xyloglucan also increases the adhesion between cellulose surfaces in a time dependent manner, interpreted in terms of a diffusive bridging interaction. These facts combined provide a mechanistic explanation to contemporaneous findings about xyloglucans benefit in paper strength and formation. In air, the adhesion between e.g. particles or fibres, must be at least partially determined by the formation of capillary condensates. The dependence of capillary condensation on relative humidity is however not yet fully understood so studies have been performed to cast light on this phenomenon. Above about 60 % relative humidity the adhesion and friction increase dramatically due to the formation of large capillary condensates. The extent of the condensates depends both on the time the surfaces equilibrate, but also on the surface roughness. Harvesting of the condensate during shearing is also observed through hysteresis of the friction-load relationship. Measurements of surface forces and friction in surfactant systems show a clear relation between the adsorbed surfactant layer and the barrier force and adhesion, which in turn determine the friction. All of these interactions are critically dependent on the composition of the surfactant solution. A mixed surfactant system has been studied consisting of a trimethylammonium cationic surfactant and a polyoxyethylene nonionic surfactant. The results are interpreted in terms of current theories of adsorption and synergistic interactions. Finally, a novel technique for the in situ calibration and measurement of friction with the AFM is proposed. Comparison with lateral measurements show that the approach is successful. === QC 20100920