Enzyme substrate solvent interactions : a case study on serine hydrolases
Reaction rates and selectivities were measured for transacylation of fatty acid esters in solvents catalysed by Candida antarctica lipase B and by cutinase from Humicola insolens. With these enzymes classical water-based enzymology can be expanded to many different solvents allowing large variations...
Main Author: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
KTH, Biokemi
2008
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4867 http://nbn-resolving.de/urn:isbn:978-91-7415-094-0 |
Summary: | Reaction rates and selectivities were measured for transacylation of fatty acid esters in solvents catalysed by Candida antarctica lipase B and by cutinase from Humicola insolens. With these enzymes classical water-based enzymology can be expanded to many different solvents allowing large variations in interaction energies between the enzymes, the substrates and the surrounding. Further ,hydrolysis reactions catalysed by Bacillus subtilis esterase 2 were investigated. Thermodynamics analyses revealed that the enzyme contribution to reaction rate acceleration compared to acid catalysis was purely entropic. On the other hand, studies of differences in activation entropy and enthalpy between enantiomers and between homologous esters showed that high substrate specificity was favoured by enthalpic stabilisation. Solvent was found to have a profound effect on enzyme catalysis, affecting both reaction rate and selectivity. Differences in substrate solubility will impact enzyme specificity since substrate binding is an equilibrium between enzyme-bound substrate and substrate in free solution. In addition, solven tmolecules were found to act as enzyme inhibitors, showing both competitive and non-competitive behaviour. In several homologous data series enthalpy-entropy compensation relationships were encountered. A possible extrathermodynamic relationship between enthalpy and entropy can easily be lost under co-varying errors propagated from the experiments. From the data in this thesis, one instance was found of a real enthalpy-entropy compensation that could be distinguished from statistical errors, while other examples could not be verified. === QC 20100722 |
---|