On Suction Box Dewatering Mechanisms

In previous studies on suction box dewatering, three mechanisms were identified that determine the dry content of a web, viz. web compression, displacement of water by air and rewetting. In the present work, the relative importance of the three mechanisms was investigated through direct measurement...

Full description

Bibliographic Details
Main Author: Åslund, Peter
Format: Doctoral Thesis
Language:English
Published: KTH, Fiber- och polymerteknik 2008
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4780
http://nbn-resolving.de/urn:isbn:978-91-7178-974-7
Description
Summary:In previous studies on suction box dewatering, three mechanisms were identified that determine the dry content of a web, viz. web compression, displacement of water by air and rewetting. In the present work, the relative importance of the three mechanisms was investigated through direct measurement of the web deformation, the dry content changes during and after the suction pulse, the air flow through the fibre network and the saturation of the web after the suction pulse. Suction pressure, suction time and rewetting time were varied. The experiments were done with chemical and mechanical pulp webs of various grammages. It was found that a large web deformation took place during the suction pulse, particularly at its beginning. Compression dewatering was found to be the most dominant dewatering mechanism. Displacement dewatering started after most of the web compression had occurred. Its contribution to the increase in dry content was most pronounced for higher suction pressures, longer suction times and for chemical pulp webs. A surprisingly large expansion of the web was observed immediately after the suction pulse. This expansion was the effect of rewetting. This rewetting strongly reduced the dry content of the web if the web had not been immediately separated from the forming fabric at the end of the suction pulse. Under the conditions studied, the decrease in dry content amounted to the order of 3 to 6 %. Rewetting was smaller for longer suction times and higher suction pressures. A considerable air flow through the web occurred under these conditions. This air flow apparently moved water from the forming fabric into the suction box, thus making less water available for rewetting. Rewetting for mechanical pulp webs was more pronounced and took place faster than for chemical pulps. The use of a membrane on top of the web during suction box dewatering proved to be advantageous for reducing the air flow through the web. However, under the conditions investigated, the dry content could not be improved. Although the web compression was increased when using a membrane, especially at a higher suction pressure, rewetting after the suction pulse had an even larger negative impact on the dry content, which, as a result, was lower. === QC 20100924