Computer methods for voice analysis
This thesis consists of five articles and a summary. Thethesis deals with methods for measuring properties of thevoice. The methods are all computer-based, but utilisedifferent approaches for measuring different aspects of thevoice. Paper I introduces the Visual Sort and Rate (VSR) method forpercept...
Main Author: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
KTH, Tal, musik och hörsel
2003
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3485 http://nbn-resolving.de/urn:isbn:91-7283-461-7 |
Summary: | This thesis consists of five articles and a summary. Thethesis deals with methods for measuring properties of thevoice. The methods are all computer-based, but utilisedifferent approaches for measuring different aspects of thevoice. Paper I introduces the Visual Sort and Rate (VSR) method forperceptual rating of voice quality. The method is based on theVisual Analogue Scale (VAS), but simultaneously shows allstimuli as icons along the VAS on the computer screen. As thelistener places similar-sounding stimuli close to each otherduring the rating process, comparing stimuli becomeseasier. Paper II introduces the correlogram. Fundamental frequencyF0 sometimes cannot be strictly defined, particularly forperturbed voice signals. The method displays multipleconsecutive correlation functions in a grey scale image. Thus,the correlogram avoids selecting a single F0 value. Rather itpresents an unbiased image of periodicity, allowing theinvestigator to select among several candidates, ifappropriate. PaperIII introduces a method for detection of phonation tobe utilised in voice accumulators. The method uses twomicrophones attached near the subjects ears. Phase andamplitude relations of the microphone signals are used to forma phonation detector. The output of the method can be used tomeasure phonation time, speaking time and fundamental frequencyof the subject, as well as sound pressure level of both thesubjects voicing and the ambient sounds. Paper IV introduces a method for Fourier analysis ofhigh-speed laryngoscopic imaging. The data from the consecutiveimages are re-arranged to form time-series that reflect thetime-variation of light intensity in each pixel. Each of thesetime series is then analysed by means of Fouriertransformation, such that a spectrum for each pixel isobtained. Several ways of displaying these spectra aredemonstrated. Paper V examines a test set-up for simultaneous recording ofairflow, intra-oral pressure, electro-glottography, audio andhigh-speed imaging. Data are analysed with particular focus onsynchronisation between glottal area and inverse filteredairflow. Several methodological aspects are also examined, suchas the difficulties in synchronising high-speed imaging datawith the other signals. === QC 20100609 |
---|