Experimental studies of confinement in the EXTRAP T2 and T2R reversed field pinches

The confinement properties of fusion plasmas are affected bymagnetic and electrostatic fluctuations. The determination ofthe plasma confinement properties requires the measurement ofseveral global and local quantities such as the ion andelectron temperatures, the electron and neutral densityprofiles...

Full description

Bibliographic Details
Main Author: Cecconello, Marco
Format: Doctoral Thesis
Language:English
Published: KTH, Alfvénlaboratoriet 2003
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3468
http://nbn-resolving.de/urn:isbn:91-7283-417-X
Description
Summary:The confinement properties of fusion plasmas are affected bymagnetic and electrostatic fluctuations. The determination ofthe plasma confinement properties requires the measurement ofseveral global and local quantities such as the ion andelectron temperatures, the electron and neutral densityprofiles, the radiation emissivity profiles, the ohmic inputpower and the particle and heat diffusivities. The focus ofthis thesis is the study of the plasma confinement propertiesbased on measurements of these quantities under differentexperimental conditions. The studies have been carried out on the reversed fieldpinch experiments EXTRAP T2 and T2R at the AlfvénLaboratory, Royal Institute of Technology (KTH) in Stockholm.Studies carried out in EXTRAP T2 were focused on dynamoactivity and on the effect of phase alignment and locking tothe wall of magnetic instabilities. These were observed with adedicated imaging system. The experimental studies in EXTRAPT2R were focused on the measurement of the confinementproperties of different configurations. To this aim, a set ofdiagnostics were used some of which were upgraded, such as theinterferometer, while others were newly installed, such as aneutral particle energy analyser and a bolometer array. The dynamo, which is responsible for the plasma sustainment,involves resistive magnetohydrodynamic instabilities thatenhance stochastic transport. Furthermore, the plasmaconfinement properties are in general improved in the presenceof mode rotation. The possibility of reducing the stochastictransport and thereby further improving the confinement hasbeen demonstrated in a current profile control experiment.These results indicate that long pulse operations with aresisitive shell and current profile control are indeedfeasible. KeywordsEXTRAP T2, T2R, reversed field pinch, dynamo,energy confinement time, transport, CCD, bolometer,interferometer, neutral particle energy analyser, PPCD, MonteCarlo === QC 20100524