Complementary Labels and Their Impact on Deep Learning of a Target Class : Evaluated on Object Detection in the Low Data Regime
In specialized object detection tasks and domains, it is sometimes only possible to collect and annotate a small amount of data for training and evaluation, which constrains training to a low data regime that can lead to poor generalization. In this thesis, the impact of annotations from additional...
Main Author: | Sirak, Simon |
---|---|
Format: | Others |
Language: | English |
Published: |
KTH, Skolan för elektroteknik och datavetenskap (EECS)
2021
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-305574 |
Similar Items
-
Klassificering av bilder från åtelkameror med hjälp av deep learning
by: Morgan, James, et al.
Published: (2021) -
Data Synthesis in Deep Learning for Object Detection
by: Haddad, Josef
Published: (2021) -
Explainable Deep Learning Methods for Market Surveillance
by: Jonsson Ewerbring, Marcus
Published: (2021) -
Analys av inskannade arkiverade dokument med hjälp av objektdetektering uppbyggt på AI
by: Svedberg, Malin
Published: (2020) -
Självannotering för att skapa bättre förståelse av data
by: Persson, Mårten, et al.
Published: (2017)