Summary: | Gait analysis can improve our understanding of gait to improve medical diagnosis or treatment in clinical assessment. Studying the gait cycle in an embedded sensor system is essential for the detection of any abnormal walking pattern. This project aims to investigate several methods for gait phase recognition on embedded systems based on Hidden Markov Model (HMM) and Long short term memory (LSTM). This project proposes three methods, single HMM, multiple HMMs, and LSTM models, to identify the phase number in one gait. Single HMM has been constructed with the unit of gait via HMM learning. The corresponding phase number in the hidden state sequence can be selected for the observations via HMM decoding. Multiple HMMs have been constructed with the unit of phase instead of gait via HMM learning. The HMM evaluation can select the corresponding phase number in the hidden state sequence with the largest log- likelihood. Frame blocking and windowing function is also applied to evaluate these two methods. Estimation, validation, and forecast are implemented in the LSTM method as a benchmark. After comparing and evaluating the three methods for phase inference in terms of execution time, accuracy, and limitations, the method with multiple HMMs can provide satisfactory accuracy of gait phase number recognition in a relatively short time. It can be concluded that the multiple HMMs method may be more suitable for application in this phase inference scenario on the embedded sensor processing systems if the timing requirement is not so stringent. === Gånganalys kan förbättra vår förståelse för gång för att förbättra medicinsk diagnos eller behandling vid klinisk bedömning. Att studera gångcykeln i ett inbyggt sensorsystem är avgörande för detektering av onormalt gångmönster. Detta projekt syftar till att undersöka flera metoder för gångfasinferens på inbäddade system baserat på Hidden Markov Model (HMM) och Long short term memory (LSTM). I detta projekt har tre metoder, enstaka HMM, flera HMM och LSTM-modeller, föreslagits för att identifiera fasnumret i en gång. Enstaka HMM har konstruerats med gångenheten via HMM-lärande. Motsvarande fasnummer i den dolda tillståndssekvensen kan väljas för observationerna via HMM-avkodning. Flera HMM har konstruerats med fasenheten istället för gång via HMM-lärande. Motsvarande fasnummer i den dolda tillståndssekvensen kan väljas med störst logsannolikhet via HMM-utvärdering. Frame Blocking och Windowing-funktionen används också för att utvärdera dessa två metoder. Uppskattning, validering och prognos implementeras i LSTM-metoden som ett riktmärke. Efter att ha jämfört och utvärderat de tre metoderna för fasinferens när det gäller exekveringstid, noggrannhet och begränsningar kan metoden med flera HMM: er uppnå tillfredsställande noggrannhet för fasnummerigenkänning på relativt kort tid. Vi kan dra slutsatsen att den flera HMM-metoden kan vara mer lämplig för tillämpning i detta fasinferensscenario på de inbyggda sensorbehandlingssystemen om tidskravet inte är så strikt.
|