Summary: | In this thesis, an anomaly detection framework has been developed to aid in maintenance of tightening tools. The framework is built using LSTM networks and gaussian naive bayes classifiers. The suitability of LSTM networks for multi-variate sensor data and time-series prediction as a basis for anomaly detection has been explored. Current literature and research is mostly concerned with uni-variate data, where LSTM based approaches have had variable but often good results. However, most real world settings with sensor networks, such as the environment and tool from which this thesis data is gathered, are multi-variable. Thus, there is a need to research the effectiveness of the LSTM model in this setting. The thesis has emphasized the need of well defined evaluation metrics of anomaly detection approaches, the difficulties of defining anomalies and anomaly datasets, as well as illustrated the effectiveness of LSTM networks in multi-variate environments. === I den här uppsatsen har ett anomali detektions ramverk utvecklats för att bidra till underhållandet av åtdragarverktyg. Ramverket bygger på LSTM neurala nätverk och gaussian Naive Bayes klassificerare. Användbarheten av LSTM nätverk för multi-variabel data och tidsserie prediktion som basis för anomali detektion har undersökts. Nutida literatur och forskning berör mest envariabel data där LSTM baserade metoder ofta har presterat bra. Men, de flesta system i verkligheten är inte envariabel utan multivariabel, som den miljö verktyget, vars data undersöks i den här uppsatsen, opererar i. Därför anses det att det finns ett behov att undersöka användbarheten av LSTM modeller i den här typen av miljö. Det här arbetet har betonat vikten av väldefinierade utvärderingsvärden för anomali detektion, svårigheterna med att definiera anomalier och anomalidataset, samt illustrerat användbarheten av LSTM nätverk i multivariabla miljöer.
|