Machinery Health Indicator Construction using Multi-objective Genetic Algorithm Optimization of a Feed-forward Neural Network based on Distance
Assessment of machine health and prediction of future failures are critical for maintenance decisions. Many of the existing methods use unsupervised techniques to construct health indicators by measuring the disparity between the current state and either the healthy or the faulty states of the syste...
Main Author: | Nyman, Jacob |
---|---|
Format: | Others |
Language: | English |
Published: |
KTH, Skolan för elektroteknik och datavetenskap (EECS)
2021
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298084 |
Similar Items
-
The Influence of Psychic Distance on Internationalization : A Multiple Case Study of Swedish SMEs within the Service Industry
by: AlSharif, Ebrahim, et al.
Published: (2018) -
Adapting a data-driven battery ageing model to make remaining-useful-life estimations using dynamic vehicle data
by: Phatarphod, Viraj
Published: (2021) -
Den återstående kontraktstidens inverkan på fotbollsspelares psykiska hälsa.
by: Dahlberg, Mikael
Published: (2013) -
Evaluation of Prognostic Factors In Nasopharyngeal Cancers
by: Rüstem Hasanov, et al.
Published: (2017-07-01) -
Faktor Prognostik Kematian Bayi Berat Lahir Sangat Rendah di Rumah Sakit Rujukan Tingkat Tersier
by: Tunjung Wibowo, et al.
Published: (2016-11-01)