Summary: | Utsläppskontroll, reglerad av allt strängare lagstiftning, ställer höga krav på utvecklingen av noggranna efterbehandlingssystem för avgaser. När det gäller utsläpp från dieselmotorer utgör NOx-minskning en av de största utmaningarna. För tunga fordon tacklas denna utmaning ofta genom ett SCR-system. SCR-systemet kan omvandla upp till 95% av NOx-utsläppen till kväve och syre, genom utnyttjande av ett selektivt reduktionsmedel över en katalysatoryta. Ammoniak är ett sådant reduktionsmedel men är inte i sig ett lämpligt val för mobila tillämpningar på grund av de miljö-, hälso- och säkerhetsproblem som är förknippade med denna förening. Istället används en ofarlig vattenlösning med urea, kallad AdBlue, som vid injektion i varm avgas sönderdelas till tillräckliga mängder ammoniak som behövs vid SCR-katalysatorn för att minska den NOx som produceras relativt motorns belastningspunkt. AdBlue-injektion i avgasströmmen kan emellertid komplicera ett redan komplext system ur ett materialvalsperspektiv. Även om urea inte anses vara ett särskilt korrosivt ämne råder en viss osäkerhet kring biprodukterna som kan bildas vid ofullständig nedbrytning av urea. I avgassystem nämns ofta dessa ureaderivat i samband med ett fenomen då smält urea skapar en flytande film på avgassystemets ytor som då genererar fasta biproduktavslagringar vid filmens yttre kanter. Denna studie syftar till att identifiera några av riskerna kopplade till AdBlue-injektion på ytor av rostfritt stål. Därav undersöks nedbrytningsbeteendet hos de austenitiska rostfria stålen 1.4828 och 1.4835 efter vätning med AdBlue-spray under statiska förhållanden i avgaser, 350 ℃ och 700 kg/h. Testbänksproceduren ger ett kostnadseffektivt sätt att sålla ut potentiella rostfria stål i en realistisk avgasmiljö innan komponenttestning. Testet av 1.4828 inkluderar även ett dragprov, för att undersöka betydelsen av plastiska deformationer. Därtill undersöks en martensitisk stålkomponent, som tidigare använts i en avgasmiljö under AdBlue-injektion, för att ytterligare bilda en uppfattning om de risker som ett material under dessa förhållanden måste uthärda. Rostfria stål undersöktes efter exponering med konfokalmikroskopi och SEM/EDS. Avlagringar som hittades på 1.4835 studerades med FTIR. Resultaten visar riskerna med ett dåligt materialval och eventuell frånvaro av oxidfilm som kan relateras till termisk stress, ureanedbrytningsreaktioner med oxidförbrukande egenskaper eller mekaniskt avlägsnande, t.ex. erosion === Emission control, regulated by evermore strict legislation, put high demands on the development of meticulous exhaust gas aftertreatment systems. In diesel engine emissions, NOx reduction poses one of the major challenges. For heavy duty vehicles, this challenge is often tackled by the use of an SCR system, capable of converting up to 95 % of NOx emissions into nitrogen and oxygen, by use of a selective reductant over a catalyst surface. Ammonia is such a reductant but is not in itself an appropriate choice for mobile applications due to the environmental, health and safety concerns associated with this compound. Hence, an aqueous solution of urea, trademarked AdBlue, is used as a harmless reservoir that upon injection into hot exhaust gas decompose into sufficient amounts of ammonia needed at the SCR catalyst to reduce NOx produced, relative to the load point of the engine. AdBlue injection into the exhaust gas stream can, however, complicate an already complicated system from a material choice perspective. Although, urea is not deemed a particularly corrosive compound, concerns have been raised towards its derivatives often mentioned in relation to a melted urea wall film phenomenon, on exhaust surfaces, generating, solid by-product deposits at the peripheral areas of the film. This work aims to identify some of the risks coupled with AdBlue injection on stainless steel surfaces. Hence, degradation behaviour of austenitic stainless steel grades 1.4828 and 1.4835, is studied after wetting with AdBlue spray in static exhaust gas conditions, 350 ℃ and 700 kg/h. The test bench procedure, provide a cost-effective way of screening potential stainless steels in a realistic exhaust gas environment before component testing. The test of 1.4828 includes a comparison of the grade with and without plastic deformation. Additionally, a martensitic steel component, used in an exhaust gas environment under AdBlue injection, was added to this work to further portray the risks that a material under these conditions must endure. Stainless steels are examined post exposure using confocal microscopy and SEM/EDS. Deposits found on 1.4835 were studied with FTIR. The results portray the risks of a poor material choice and possible absence of oxide film that could be related to thermal stress, decomposition reactions involving oxide consuming properties, or mechanical removal e.g. erosion.
|