Clustering of Financial Account Time Series Using Self Organizing Maps

This thesis aims to cluster financial account time series by extracting global features from the time series and by using two different dimensionality reduction methods, Kohonen Self Organizing Maps and principal component analysis, to cluster the set of the time series by using K-means. The results...

Full description

Bibliographic Details
Main Author: Nordlinder, Magnus
Format: Others
Language:English
Published: KTH, Matematisk statistik 2021
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291612
id ndltd-UPSALLA1-oai-DiVA.org-kth-291612
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-kth-2916122021-03-17T05:21:19ZClustering of Financial Account Time Series Using Self Organizing MapsengKlustring av Finansiella Konton med Kohonen-kartorNordlinder, MagnusKTH, Matematisk statistik2021Kohonenfinancial accountsself organizing mapsclustringtime seriesKohonenfinansiella kontonklustringtidsserierMathematicsMatematikThis thesis aims to cluster financial account time series by extracting global features from the time series and by using two different dimensionality reduction methods, Kohonen Self Organizing Maps and principal component analysis, to cluster the set of the time series by using K-means. The results are then used to further cluster a set of financial services provided by a financial institution, to determine if it is possible to find a set of services which coincide with the time series clusters. The results find several sets of services that are prevalent in the different time series clusters. The resulting method can be used to understand the dynamics between deposits variability and the customers usage of different services and to analyse whether a service is more used in different clusters. Målet med denna uppsats är att klustra tidsserier över finansiella konton genom att extrahera tidsseriernas karakteristik. För detta används två metoder för att reducera tidsseriernas dimensionalitet, Kohonen Self Organizing Maps och principal komponent analys. Resultatet används sedan för att klustra finansiella tjänster som en kund använder, med syfte att analysera om det existerar ett urval av tjänster som är mer eller mindre förekommande bland olika tidsseriekluster. Resultatet kan användas för att analysera dynamiken mellan kontobehållning och kundens finansiella tjänster, samt om en tjänst är mer förekommande i ett tidsseriekluster. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291612TRITA-SCI-GRU ; 2021:021application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic Kohonen
financial accounts
self organizing maps
clustring
time series
Kohonen
finansiella konton
klustring
tidsserier
Mathematics
Matematik
spellingShingle Kohonen
financial accounts
self organizing maps
clustring
time series
Kohonen
finansiella konton
klustring
tidsserier
Mathematics
Matematik
Nordlinder, Magnus
Clustering of Financial Account Time Series Using Self Organizing Maps
description This thesis aims to cluster financial account time series by extracting global features from the time series and by using two different dimensionality reduction methods, Kohonen Self Organizing Maps and principal component analysis, to cluster the set of the time series by using K-means. The results are then used to further cluster a set of financial services provided by a financial institution, to determine if it is possible to find a set of services which coincide with the time series clusters. The results find several sets of services that are prevalent in the different time series clusters. The resulting method can be used to understand the dynamics between deposits variability and the customers usage of different services and to analyse whether a service is more used in different clusters. === Målet med denna uppsats är att klustra tidsserier över finansiella konton genom att extrahera tidsseriernas karakteristik. För detta används två metoder för att reducera tidsseriernas dimensionalitet, Kohonen Self Organizing Maps och principal komponent analys. Resultatet används sedan för att klustra finansiella tjänster som en kund använder, med syfte att analysera om det existerar ett urval av tjänster som är mer eller mindre förekommande bland olika tidsseriekluster. Resultatet kan användas för att analysera dynamiken mellan kontobehållning och kundens finansiella tjänster, samt om en tjänst är mer förekommande i ett tidsseriekluster.
author Nordlinder, Magnus
author_facet Nordlinder, Magnus
author_sort Nordlinder, Magnus
title Clustering of Financial Account Time Series Using Self Organizing Maps
title_short Clustering of Financial Account Time Series Using Self Organizing Maps
title_full Clustering of Financial Account Time Series Using Self Organizing Maps
title_fullStr Clustering of Financial Account Time Series Using Self Organizing Maps
title_full_unstemmed Clustering of Financial Account Time Series Using Self Organizing Maps
title_sort clustering of financial account time series using self organizing maps
publisher KTH, Matematisk statistik
publishDate 2021
url http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291612
work_keys_str_mv AT nordlindermagnus clusteringoffinancialaccounttimeseriesusingselforganizingmaps
AT nordlindermagnus klustringavfinansiellakontonmedkohonenkartor
_version_ 1719384005884772352