Encoder-Decoder Networks for Cloud Resource Consumption Forecasting

Excessive resource allocation in telecommunications networks can be prevented by forecasting the resource demand when dimensioning the networks and the allocation the necessary resources accordingly, which is an ongoing effort to achieve a more sustainable development. In this work, traffic data fro...

Full description

Bibliographic Details
Main Author: Mejdi, Sami
Format: Others
Language:English
Published: KTH, Skolan för elektroteknik och datavetenskap (EECS) 2021
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291546
id ndltd-UPSALLA1-oai-DiVA.org-kth-291546
record_format oai_dc
collection NDLTD
language English
format Others
sources NDLTD
topic Telecommunications
Cloud
Time Series
Forecasting
Encoder-Decoder
Deep Learning
Machine Learning
Telekommunikation
Moln
Tidsserie
Prognoser
Envoder-Decoder
Djupinlärning
Maskininlärning
Computer and Information Sciences
Data- och informationsvetenskap
spellingShingle Telecommunications
Cloud
Time Series
Forecasting
Encoder-Decoder
Deep Learning
Machine Learning
Telekommunikation
Moln
Tidsserie
Prognoser
Envoder-Decoder
Djupinlärning
Maskininlärning
Computer and Information Sciences
Data- och informationsvetenskap
Mejdi, Sami
Encoder-Decoder Networks for Cloud Resource Consumption Forecasting
description Excessive resource allocation in telecommunications networks can be prevented by forecasting the resource demand when dimensioning the networks and the allocation the necessary resources accordingly, which is an ongoing effort to achieve a more sustainable development. In this work, traffic data from cloud environments that host deployed virtualized network functions (VNFs) of an IP Multimedia Subsystem (IMS) has been collected along with the computational resource consumption of the VNFs. A supervised learning approach was adopted to address the forecasting problem by considering encoder-decoder networks. These networks were applied to forecast future resource consumption of the VNFs by regarding the problem as a time series forecasting problem, and recasting it as a sequence-to-sequence (seq2seq) problem. Different encoder-decoder network architectures were then utilized to forecast the resource consumption. The encoder-decoder networks were compared against a widely deployed classical time series forecasting model that served as a baseline model. The results show that while the considered encoder-decoder models failed to outperform the baseline model in overall Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE), the forecasting capabilities were more resilient to degradation over time. This suggests that the encoder-decoder networks are more appropriate for long-term forecasting, which is an agreement with related literature. Furthermore, the encoder-decoder models achieved competitive performance when compared to the baseline, despite being treated with limited hyperparameter-tuning and the absence of more sophisticated functionality such as attention. This work has shown that there is indeed potential for deep learning applications in forecasting of cloud resource consumption. === Överflödig allokering av resurser I telekommunikationsnätverk kan förhindras genom att prognosera resursbehoven vid dimensionering av dessa nätverk. Detta görs i syfte att bidra till en mer hållbar utveckling. Inför detta prjekt har trafikdata från molnmiljön som hyser aktiva virtuella komponenter (VNFs) till ett IÅ Multimedia Subsystem (IMS) samlats in tillsammans med resursförbrukningen av dessa komponenter. Detta examensarbete avhandlar hur effektivt övervakad maskininlärning i form av encoder-decoder nätverk kan användas för att prognosera resursbehovet hos ovan nämnda VNFs. Encoder-decoder nätverken appliceras genom att betrakta den samlade datan som en tidsserie. Problemet med att förutspå utvecklingen av tidsserien formuleras sedan som ett sequence-2-sequence (seq2seq) problem. I detta arbete användes en samling encoder-decoder nätverk med olika arkitekturer för att prognosera resursförbrukningen och dessa jämfördes med en populär modell hämtad från klassisk tidsserieanalys. Resultaten visar att encoder-decoder nätverken misslyckades med att överträffa den klassiska tidsseriemodellen med avseende på Root Mean Squeared Error (RMSE) och Mean Absolut Error (MAE). Dock visar encoder-decoder nätverken en betydlig motståndskraft mot prestandaförfall över tid i jämförelse med den klassiska tidsseriemodellen. Detta indikerar att encoder-decoder nätverk är lämpliga för prognosering över en längre tidshorisont. Utöver detta visade encoder-decoder nätverken en konkurrenskraftig förmåga att förutspå det korrekta resursbehovet, trots en begränsad justering av disponeringsparametrarna och utan mer sofistikerad funktionalitet implementerad som exempelvis attention. 
author Mejdi, Sami
author_facet Mejdi, Sami
author_sort Mejdi, Sami
title Encoder-Decoder Networks for Cloud Resource Consumption Forecasting
title_short Encoder-Decoder Networks for Cloud Resource Consumption Forecasting
title_full Encoder-Decoder Networks for Cloud Resource Consumption Forecasting
title_fullStr Encoder-Decoder Networks for Cloud Resource Consumption Forecasting
title_full_unstemmed Encoder-Decoder Networks for Cloud Resource Consumption Forecasting
title_sort encoder-decoder networks for cloud resource consumption forecasting
publisher KTH, Skolan för elektroteknik och datavetenskap (EECS)
publishDate 2021
url http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291546
work_keys_str_mv AT mejdisami encoderdecodernetworksforcloudresourceconsumptionforecasting
_version_ 1719384004419911680
spelling ndltd-UPSALLA1-oai-DiVA.org-kth-2915462021-03-17T05:21:19ZEncoder-Decoder Networks for Cloud Resource Consumption ForecastingengMejdi, SamiKTH, Skolan för elektroteknik och datavetenskap (EECS)2021TelecommunicationsCloudTime SeriesForecastingEncoder-DecoderDeep LearningMachine LearningTelekommunikationMolnTidsseriePrognoserEnvoder-DecoderDjupinlärningMaskininlärningComputer and Information SciencesData- och informationsvetenskapExcessive resource allocation in telecommunications networks can be prevented by forecasting the resource demand when dimensioning the networks and the allocation the necessary resources accordingly, which is an ongoing effort to achieve a more sustainable development. In this work, traffic data from cloud environments that host deployed virtualized network functions (VNFs) of an IP Multimedia Subsystem (IMS) has been collected along with the computational resource consumption of the VNFs. A supervised learning approach was adopted to address the forecasting problem by considering encoder-decoder networks. These networks were applied to forecast future resource consumption of the VNFs by regarding the problem as a time series forecasting problem, and recasting it as a sequence-to-sequence (seq2seq) problem. Different encoder-decoder network architectures were then utilized to forecast the resource consumption. The encoder-decoder networks were compared against a widely deployed classical time series forecasting model that served as a baseline model. The results show that while the considered encoder-decoder models failed to outperform the baseline model in overall Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE), the forecasting capabilities were more resilient to degradation over time. This suggests that the encoder-decoder networks are more appropriate for long-term forecasting, which is an agreement with related literature. Furthermore, the encoder-decoder models achieved competitive performance when compared to the baseline, despite being treated with limited hyperparameter-tuning and the absence of more sophisticated functionality such as attention. This work has shown that there is indeed potential for deep learning applications in forecasting of cloud resource consumption. Överflödig allokering av resurser I telekommunikationsnätverk kan förhindras genom att prognosera resursbehoven vid dimensionering av dessa nätverk. Detta görs i syfte att bidra till en mer hållbar utveckling. Inför detta prjekt har trafikdata från molnmiljön som hyser aktiva virtuella komponenter (VNFs) till ett IÅ Multimedia Subsystem (IMS) samlats in tillsammans med resursförbrukningen av dessa komponenter. Detta examensarbete avhandlar hur effektivt övervakad maskininlärning i form av encoder-decoder nätverk kan användas för att prognosera resursbehovet hos ovan nämnda VNFs. Encoder-decoder nätverken appliceras genom att betrakta den samlade datan som en tidsserie. Problemet med att förutspå utvecklingen av tidsserien formuleras sedan som ett sequence-2-sequence (seq2seq) problem. I detta arbete användes en samling encoder-decoder nätverk med olika arkitekturer för att prognosera resursförbrukningen och dessa jämfördes med en populär modell hämtad från klassisk tidsserieanalys. Resultaten visar att encoder-decoder nätverken misslyckades med att överträffa den klassiska tidsseriemodellen med avseende på Root Mean Squeared Error (RMSE) och Mean Absolut Error (MAE). Dock visar encoder-decoder nätverken en betydlig motståndskraft mot prestandaförfall över tid i jämförelse med den klassiska tidsseriemodellen. Detta indikerar att encoder-decoder nätverk är lämpliga för prognosering över en längre tidshorisont. Utöver detta visade encoder-decoder nätverken en konkurrenskraftig förmåga att förutspå det korrekta resursbehovet, trots en begränsad justering av disponeringsparametrarna och utan mer sofistikerad funktionalitet implementerad som exempelvis attention.  Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291546TRITA-EECS-EX ; 2021:72application/pdfinfo:eu-repo/semantics/openAccess