Comparison of direct air capture technology to point source CO2 capture in Iceland

Det är välkänt att klimatförändringar på grund av global uppvärmning är en av de största kriserna som hotar jorden. Det är en enorm utmaning för mänskligheten att minska koldioxidutsläppen, den främsta orsaken till global uppvärmning. Enkelt genomförbara åtgärder är inte tillräckliga och teknik för...

Full description

Bibliographic Details
Main Author: Ingvarsdóttir, Anna
Format: Others
Language:English
Published: KTH, Kemiteknik 2020
Subjects:
CCS
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289164
Description
Summary:Det är välkänt att klimatförändringar på grund av global uppvärmning är en av de största kriserna som hotar jorden. Det är en enorm utmaning för mänskligheten att minska koldioxidutsläppen, den främsta orsaken till global uppvärmning. Enkelt genomförbara åtgärder är inte tillräckliga och teknik för att ta bort koldioxid från atmosfären anses nödvändig för att temperaturökningen inte ska överstiga de 1,5 °C som anges i Parisavtalet. Direkt infångning av koldioxid från luft (vanligen kallad direkt luftinfångning, (Eng. Direct air capture - DAC)) är en ny teknik som kan ta bort koldioxid direkt från atmosfären. För närvarande är denna metod dyr; upp till 1000 USD per ton avlägsnad koldioxid. Denna höga kostnad beror främst på den relativt låga koldioxidkoncentrationen i luften, vilket leder till att en stor anläggning behövs för att fånga upp gasen och därmed stora investeringar. Tekniken är mycket energiintensiv, antingen elektrisk eller termisk, och för att göra en direkt infångning effektivare, måste anläggningen drivas med energi som inte har några eller mycket låga koldioxidutsläpp. Energin på Island är billig och dess produktion innebär ett mycket lågt koldioxidavtryck. Syftet med arbetet i denna avhandling är att utforska om metoden för direkt infångning av koldioxid från luft kommer att vara en mer genomförbar metod än koldioxidinfångning från punktkällor (eng. point source - PS) på Island på grund av god tillgång till billig och ren energi. Lärandekurvan för direkt luftfångning studerades tillsammans med scenarier för metodens tekniska utveckling. Tre olika fall med punktkällor på Island studerades för jämförelse. Två olika direkta luftinfångningstekniker analyserades också, en som drivs av en stor mängd elektricitet och en som drivs mestadels av termisk energi. Det resulterade i att i bästa fall, där inlärningshastigheten är hög och tekniska förbättringar är signifikanta, så skulle produktionskostnaden för direkt luftinfångning (levelized cost of energy, LCOC) vara lägre än motsvarande för infångning från en punktkälla. Energikostnaden påverkar LCOC för DAC idag men med teknisk utveckling förväntas energibehovet minska och därför kommer energikostnadens påverkan att bli lägre. Det är dock fortfarande viktigt, med tanke på bidraget till att minska globala uppvärmningen, att energin som driver DAC-anläggningen har ett lågt koldioxidavtryck, vilket kan garanteras på Island. Tvärtom, om inlärningshastigheten för DAC-tekniken är låg och inga tekniska förbättringar sker i lösningsmedel eller sorbenter, är och kommer DAC-tekniken att bli dyrare än infångning från punktkällor om båda anläggningarna finns på Island. En hög inlärningshastighet och teknikutveckling är beroende av trycket att nå målen i Parisavtalet. Det är därför mycket viktigt för DAC att efterfrågan på koldioxidinfångning ökar. Dessutom har DAC mer potential att påverka klimatförändringarna eftersom DAC kan vara en kolnegativ teknik om den kombineras med permanent lagring av koldioxid. PS-avskiljningen kan endast vara en kolneutral teknik och detta om den kombineras med permanent lagring av koldioxid. === It is well known that climate change due to global warming is one of the greatest crises facing the Earth. It is a huge challenge for mankind to reduce CO2 emissions, the major cause of global warming. Mitigation measures are not enough. Technologies to remove the CO2 from the atmosphere are considered necessary, so the temperature rise does not exceed 1.5°C as stated in the Paris Agreement. Direct air capture (DAC) is a new technology that can remove carbon dioxide directly from the atmosphere. Currently, this method is expensive, up to 1000 USD per ton CO2 removed. This high cost is mostly due to the relatively low concentration of CO2 in the ambient air, leading to a large unit to capture the gas and therefore high capital investment. The technology is very energy-intensive, either electrical or thermal, and to make direct air capture more efficient the plant needs to be powered with energy that has no or very low CO2 emissions. The energy in Iceland is low cost and its production has a very low carbon footprint. This thesis aims to find out if the direct air capture method will be more feasible than a point source CO2 capture in Iceland due to good access to low-cost and clean energy. The learning curve for direct air capture was studied along with scenarios for its technological development. Two different direct air capture technologies were analyzed, one that is powered by a large amount of electricity and one powered mostly by thermal energy. Three different point source cases in Iceland were studied for comparison. For the best-case scenario, where the learning rate is high and technological improvements are significant, the levelized cost of direct air capture is lower than levelized cost of point source capture. The cost of energy affects the levelized cost of direct air capture today but with technical development, the energy needed is expected to go down, and therefore the effect of energy cost will be lower.  However, it is still important, concerning contribution to reducing global warming, that the energy powering the direct air capture plant has a low carbon footprint, which can be assured in Iceland. On the contrary, if the learning rate of the direct air capture technology is low and no technical improvements occur in solvents or sorbents the direct air capture technology is and will be more expensive than point source capture considering both located in Iceland. The high learning rate and development in technology are dependent on the pressure to reach the goals of the Paris Agreement. It is therefore vital for direct air capture that the demand for carbon removal measures is enhanced due to pressure to reach the Paris Agreement goals. Furthermore, direct air capture has more potential to affect climate change than point source capture as direct air capture can be a carbon-negative technology if coupled with the permanent storage of CO2. The point source capture can only be a carbon-neutral technology if coupled with the permanent storage of CO2.