Support Unit Classification through Supervised Machine Learning
The purpose of this article is to evaluate the impact a supervised machine learning classification model can have on the process of internal customer support within a large digitized company. Chatbots are becoming a frequently used utility among digital services, though the true general impact is no...
Main Authors: | , |
---|---|
Format: | Others |
Language: | English |
Published: |
KTH, Skolan för elektroteknik och datavetenskap (EECS)
2020
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281537 |
id |
ndltd-UPSALLA1-oai-DiVA.org-kth-281537 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-kth-2815372020-09-22T05:26:08ZSupport Unit Classification through Supervised Machine LearningengPehrson, JakobLindstrand, SaraKTH, Skolan för elektroteknik och datavetenskap (EECS)KTH, Skolan för elektroteknik och datavetenskap (EECS)2020Chatbotcustomer satisfactionproductivityand neural networksChatbotkundnöjdhetproduktivitetoch neurala nätverkComputer and Information SciencesData- och informationsvetenskapThe purpose of this article is to evaluate the impact a supervised machine learning classification model can have on the process of internal customer support within a large digitized company. Chatbots are becoming a frequently used utility among digital services, though the true general impact is not always clear. The research is separated into the following two questions: (1) Which supervised machine learning algorithm of naïve Bayes, logistic regression, and neural networks can best predict the correct support a user needs and with what accuracy? And (2) What is the effect on the productivity and customer satisfaction of using machine learning to sort customer needs? The data was collected from the internal server database of a large digital company and was then trained on and tested with the three classification algorithms. Furthermore, a survey was collected with questions focused on understanding how the current system affects the involved employees. A first finding indicates that neural networks is the best suited model for the classification task. Though, when the scope and complexity was limited, naïve Bayes and logistic regression performed sufficiently. A second finding of the study is that the classification model potentially improves productivity given that the baseline is met. However, a difficulty exists in drawing conclusions on the exact effects on customer satisfaction since there are many aspects to take into account. Nevertheless, there is a good potential to achieve a positive net effect. Syftet med artikeln är att utvärdera den påverkan som en klassificeringsmodell kan ha på den interna processen av kundtjänst inom ett stort digitaliserat företag. Chatbotar används allt mer frekvent bland digitala tjänster, även om den generella effekten inte alltid är tydlig. Studien är uppdelad i följande två frågeställningar: (1) Vilken klassificeringsalgoritm bland naive Bayes, logistisk regression, och neurala nätverk kan bäst förutspå den korrekta hjälpen en användare är i behov av och med vilken noggrannhet? Och (2) Vad är effekten på produktivitet och kundnöjdhet för användandet av maskininlärning för sortering av kundbehov? Data samlades från ett stort, digitalt företags interna databas och används sedan i träning och testning med de tre klassificeringsalgoritmerna. Vidare, en enkät skickades ut med fokus på att förstå hur det nuvarande systemet påverkar de berörda arbetarna. Ett första fynd indikerar att neurala nätverk är den mest lämpade modellen för klassificeringen. Däremot, när omfånget och komplexiteten var begränsat presenterade även naive Bayes och logistisk regression tillräckligt. Ett andra fynd av studien är att klassificeringen potentiellt förbättrar produktiviteten givet att baslinjen är mött. Däremot existerar en svårighet i att dra slutsatser om den exakta effekten på kundnöjdhet eftersom det finns många olika aspekter att ta hänsyn till. Likväl finns en god potential i att uppnå en positiv nettoeffekt. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281537TRITA-EECS-EX ; 2020:518application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Chatbot customer satisfaction productivity and neural networks Chatbot kundnöjdhet produktivitet och neurala nätverk Computer and Information Sciences Data- och informationsvetenskap |
spellingShingle |
Chatbot customer satisfaction productivity and neural networks Chatbot kundnöjdhet produktivitet och neurala nätverk Computer and Information Sciences Data- och informationsvetenskap Pehrson, Jakob Lindstrand, Sara Support Unit Classification through Supervised Machine Learning |
description |
The purpose of this article is to evaluate the impact a supervised machine learning classification model can have on the process of internal customer support within a large digitized company. Chatbots are becoming a frequently used utility among digital services, though the true general impact is not always clear. The research is separated into the following two questions: (1) Which supervised machine learning algorithm of naïve Bayes, logistic regression, and neural networks can best predict the correct support a user needs and with what accuracy? And (2) What is the effect on the productivity and customer satisfaction of using machine learning to sort customer needs? The data was collected from the internal server database of a large digital company and was then trained on and tested with the three classification algorithms. Furthermore, a survey was collected with questions focused on understanding how the current system affects the involved employees. A first finding indicates that neural networks is the best suited model for the classification task. Though, when the scope and complexity was limited, naïve Bayes and logistic regression performed sufficiently. A second finding of the study is that the classification model potentially improves productivity given that the baseline is met. However, a difficulty exists in drawing conclusions on the exact effects on customer satisfaction since there are many aspects to take into account. Nevertheless, there is a good potential to achieve a positive net effect. === Syftet med artikeln är att utvärdera den påverkan som en klassificeringsmodell kan ha på den interna processen av kundtjänst inom ett stort digitaliserat företag. Chatbotar används allt mer frekvent bland digitala tjänster, även om den generella effekten inte alltid är tydlig. Studien är uppdelad i följande två frågeställningar: (1) Vilken klassificeringsalgoritm bland naive Bayes, logistisk regression, och neurala nätverk kan bäst förutspå den korrekta hjälpen en användare är i behov av och med vilken noggrannhet? Och (2) Vad är effekten på produktivitet och kundnöjdhet för användandet av maskininlärning för sortering av kundbehov? Data samlades från ett stort, digitalt företags interna databas och används sedan i träning och testning med de tre klassificeringsalgoritmerna. Vidare, en enkät skickades ut med fokus på att förstå hur det nuvarande systemet påverkar de berörda arbetarna. Ett första fynd indikerar att neurala nätverk är den mest lämpade modellen för klassificeringen. Däremot, när omfånget och komplexiteten var begränsat presenterade även naive Bayes och logistisk regression tillräckligt. Ett andra fynd av studien är att klassificeringen potentiellt förbättrar produktiviteten givet att baslinjen är mött. Däremot existerar en svårighet i att dra slutsatser om den exakta effekten på kundnöjdhet eftersom det finns många olika aspekter att ta hänsyn till. Likväl finns en god potential i att uppnå en positiv nettoeffekt. |
author |
Pehrson, Jakob Lindstrand, Sara |
author_facet |
Pehrson, Jakob Lindstrand, Sara |
author_sort |
Pehrson, Jakob |
title |
Support Unit Classification through Supervised Machine Learning |
title_short |
Support Unit Classification through Supervised Machine Learning |
title_full |
Support Unit Classification through Supervised Machine Learning |
title_fullStr |
Support Unit Classification through Supervised Machine Learning |
title_full_unstemmed |
Support Unit Classification through Supervised Machine Learning |
title_sort |
support unit classification through supervised machine learning |
publisher |
KTH, Skolan för elektroteknik och datavetenskap (EECS) |
publishDate |
2020 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281537 |
work_keys_str_mv |
AT pehrsonjakob supportunitclassificationthroughsupervisedmachinelearning AT lindstrandsara supportunitclassificationthroughsupervisedmachinelearning |
_version_ |
1719340181262172160 |