Particle-Based Online Bayesian Learning of Static Parameters with Application to Mixture Models
This thesis investigates the possibility of using Sequential Monte Carlo methods (SMC) to create an online algorithm to infer properties from a dataset, such as unknown model parameters. Statistical inference from data streams tends to be difficult, and this is particularly the case for parametric m...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
KTH, Matematisk statistik
2020
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279847 |
id |
ndltd-UPSALLA1-oai-DiVA.org-kth-279847 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-kth-2798472020-09-05T05:28:00ZParticle-Based Online Bayesian Learning of Static Parameters with Application to Mixture ModelsengPartikelbaserad Bayesiansk realtidsinlärning av statiska modellparameterar med tillämpning på mixturmodellerFuglesang, RutgerKTH, Matematisk statistik2020Statisticsapplied mathematicssequential monte carloSMCStatistical inferenceStatisksekventiell monte carloSMCtillämpad matematikProbability Theory and StatisticsSannolikhetsteori och statistikThis thesis investigates the possibility of using Sequential Monte Carlo methods (SMC) to create an online algorithm to infer properties from a dataset, such as unknown model parameters. Statistical inference from data streams tends to be difficult, and this is particularly the case for parametric models, which will be the focus of this paper. We develop a sequential Monte Carlo algorithm sampling sequentially from the model's posterior distributions. As a key ingredient of this approach, unknown static parameters are jittered towards the shrinking support of the posterior on the basis of an artificial Markovian dynamic allowing for correct pseudo-marginalisation of the target distributions. We then test the algorithm on a simple Gaussian model, a Gausian Mixture Model (GMM), as well as a variable dimension GMM. All tests and coding were done using Matlab. The outcome of the simulation is promising, but more extensive comparisons to other online algorithms for static parameter models are needed to really gauge the computational efficiency of the developed algorithm. Detta examensarbete undersöker möjligheten att använda Sekventiella Monte Carlo metoder (SMC) för att utveckla en algoritm med syfte att utvinna parametrar i realtid givet en okänd modell. Då statistisk slutledning från dataströmmar medför svårigheter, särskilt i parameter-modeller, kommer arbetets fokus ligga i utvecklandet av en Monte Carlo algoritm vars uppgift är att sekvensiellt nyttja modellens posteriori fördelningar. Resultatet är att okända, statistiska parametrar kommer att förflyttas mot det krympande stödet av posterioren med hjälp utav en artificiell Markov dynamik, vilket tillåter en korrekt pseudo-marginalisering utav mål-distributionen. Algoritmen kommer sedan att testas på en enkel Gaussisk-modell, en Gaussisk mixturmodell (GMM) och till sist en GMM vars dimension är okänd. Kodningen i detta projekt har utförts i Matlab. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279847TRITA-SCI-GRU ; 2020:306application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Statistics applied mathematics sequential monte carlo SMC Statistical inference Statisk sekventiell monte carlo SMC tillämpad matematik Probability Theory and Statistics Sannolikhetsteori och statistik |
spellingShingle |
Statistics applied mathematics sequential monte carlo SMC Statistical inference Statisk sekventiell monte carlo SMC tillämpad matematik Probability Theory and Statistics Sannolikhetsteori och statistik Fuglesang, Rutger Particle-Based Online Bayesian Learning of Static Parameters with Application to Mixture Models |
description |
This thesis investigates the possibility of using Sequential Monte Carlo methods (SMC) to create an online algorithm to infer properties from a dataset, such as unknown model parameters. Statistical inference from data streams tends to be difficult, and this is particularly the case for parametric models, which will be the focus of this paper. We develop a sequential Monte Carlo algorithm sampling sequentially from the model's posterior distributions. As a key ingredient of this approach, unknown static parameters are jittered towards the shrinking support of the posterior on the basis of an artificial Markovian dynamic allowing for correct pseudo-marginalisation of the target distributions. We then test the algorithm on a simple Gaussian model, a Gausian Mixture Model (GMM), as well as a variable dimension GMM. All tests and coding were done using Matlab. The outcome of the simulation is promising, but more extensive comparisons to other online algorithms for static parameter models are needed to really gauge the computational efficiency of the developed algorithm. === Detta examensarbete undersöker möjligheten att använda Sekventiella Monte Carlo metoder (SMC) för att utveckla en algoritm med syfte att utvinna parametrar i realtid givet en okänd modell. Då statistisk slutledning från dataströmmar medför svårigheter, särskilt i parameter-modeller, kommer arbetets fokus ligga i utvecklandet av en Monte Carlo algoritm vars uppgift är att sekvensiellt nyttja modellens posteriori fördelningar. Resultatet är att okända, statistiska parametrar kommer att förflyttas mot det krympande stödet av posterioren med hjälp utav en artificiell Markov dynamik, vilket tillåter en korrekt pseudo-marginalisering utav mål-distributionen. Algoritmen kommer sedan att testas på en enkel Gaussisk-modell, en Gaussisk mixturmodell (GMM) och till sist en GMM vars dimension är okänd. Kodningen i detta projekt har utförts i Matlab. |
author |
Fuglesang, Rutger |
author_facet |
Fuglesang, Rutger |
author_sort |
Fuglesang, Rutger |
title |
Particle-Based Online Bayesian Learning of Static Parameters with Application to Mixture Models |
title_short |
Particle-Based Online Bayesian Learning of Static Parameters with Application to Mixture Models |
title_full |
Particle-Based Online Bayesian Learning of Static Parameters with Application to Mixture Models |
title_fullStr |
Particle-Based Online Bayesian Learning of Static Parameters with Application to Mixture Models |
title_full_unstemmed |
Particle-Based Online Bayesian Learning of Static Parameters with Application to Mixture Models |
title_sort |
particle-based online bayesian learning of static parameters with application to mixture models |
publisher |
KTH, Matematisk statistik |
publishDate |
2020 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279847 |
work_keys_str_mv |
AT fuglesangrutger particlebasedonlinebayesianlearningofstaticparameterswithapplicationtomixturemodels AT fuglesangrutger partikelbaseradbayesianskrealtidsinlarningavstatiskamodellparameterarmedtillampningpamixturmodeller |
_version_ |
1719339443772456960 |