Simultaneous Localization and Mapping of a small-scale vehicle using low-cost IMU, optical wheel encoders and LiDAR

This thesis explores and investigates the usage of a low cost six Degrees ofFreedom Inertial Measurement Unit, low cost photo-electric wheel encodersand one of the cheapest available single-band Light Detection and Rangingsensor to estimate the orientation and position of a small scale vehicle. Furt...

Full description

Bibliographic Details
Main Author: Brusén, Niklas
Format: Others
Language:English
Published: KTH, Skolan för elektroteknik och datavetenskap (EECS) 2019
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276945
id ndltd-UPSALLA1-oai-DiVA.org-kth-276945
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-kth-2769452020-06-19T03:33:47ZSimultaneous Localization and Mapping of a small-scale vehicle using low-cost IMU, optical wheel encoders and LiDARengBrusén, NiklasKTH, Skolan för elektroteknik och datavetenskap (EECS)2019Engineering and TechnologyTeknik och teknologierThis thesis explores and investigates the usage of a low cost six Degrees ofFreedom Inertial Measurement Unit, low cost photo-electric wheel encodersand one of the cheapest available single-band Light Detection and Rangingsensor to estimate the orientation and position of a small scale vehicle. Furthermore,we develop a Simultaneous Localization and Mapping approach forour sensor suite. The Inertial and Measurement Unit provides orientation ofthe vehicle based on an Attitude and Heading Reference System algorithm, usingGradient Descent and Kalman Filter design. The position of the vehicle isestimated separately by the Inertial MeasurementUnit and wheel encoders, butthen fused together in an Extended Kalman Filter. The final odometry resultsare later matched with Light Detection and Ranging scans using gmapping.Gmapping is a ROS-package that utilizes a Rao-Blackwellized Particle Filterfor Simultaneous Localization and Mapping.The thesis will present the low-cost system in detail and illustrate the performanceof the system with empirical results. Each real-time experiment is comparedand evaluated with a Motion Capture System, providing sub-millimetreaccuracy, and presented with numerical and graphical results along with errorpropagation. Det här examensarbetet har undersökt och utforskat användandet av hjulsensorer,en sex frihetsgrader tröghetsmätningsenhet och en ljusradar för att uppskattaorientering och position av ett obemannat markfordon. Vidare skapasett koncept, som samtidigt kartlägger omgivningen och lokaliserar fordoneti den givna mappen, kallat Simultaneously Localization and Mapping. Tröghetsmätningsenhetenanvänds för att estimera fordonets orientering baserat påett Attitude and Heading Reference System, som nyttjar Gradient Descent ochKalman Filter design. De optiska hjulsensorera och tröghetsmätningsenhetenutvärderas sedan separat för uppskattningen av fordonets position.Vidare sammanfogasresultaten från tröghetsmätningsenheten och hjulsensorera i ett ExtendedKalman Filter. Resultatet av filteret sammanfogas matchas sedan medresultatet från ljusradarn i ROS-paketet gmapping, som resulterar i SimultaneouslyLocalization and Mapping.Examensarbetet kommer presentera de olika sensoruppsättningarna i detaljoch utvärdera dess egenskaper. Tre olika realtidsexperiment är konstrueradeoch testade på varje sensoruppsättning. Alla experiment jämförs och utvärderasmed ett Motion Capture System monterat i Smart Mobility Lab’s lokal påKungliga Teknologiska Högskolan, Stockholm. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276945TRITA-EECS-EX ; 2019:829application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic Engineering and Technology
Teknik och teknologier
spellingShingle Engineering and Technology
Teknik och teknologier
Brusén, Niklas
Simultaneous Localization and Mapping of a small-scale vehicle using low-cost IMU, optical wheel encoders and LiDAR
description This thesis explores and investigates the usage of a low cost six Degrees ofFreedom Inertial Measurement Unit, low cost photo-electric wheel encodersand one of the cheapest available single-band Light Detection and Rangingsensor to estimate the orientation and position of a small scale vehicle. Furthermore,we develop a Simultaneous Localization and Mapping approach forour sensor suite. The Inertial and Measurement Unit provides orientation ofthe vehicle based on an Attitude and Heading Reference System algorithm, usingGradient Descent and Kalman Filter design. The position of the vehicle isestimated separately by the Inertial MeasurementUnit and wheel encoders, butthen fused together in an Extended Kalman Filter. The final odometry resultsare later matched with Light Detection and Ranging scans using gmapping.Gmapping is a ROS-package that utilizes a Rao-Blackwellized Particle Filterfor Simultaneous Localization and Mapping.The thesis will present the low-cost system in detail and illustrate the performanceof the system with empirical results. Each real-time experiment is comparedand evaluated with a Motion Capture System, providing sub-millimetreaccuracy, and presented with numerical and graphical results along with errorpropagation. === Det här examensarbetet har undersökt och utforskat användandet av hjulsensorer,en sex frihetsgrader tröghetsmätningsenhet och en ljusradar för att uppskattaorientering och position av ett obemannat markfordon. Vidare skapasett koncept, som samtidigt kartlägger omgivningen och lokaliserar fordoneti den givna mappen, kallat Simultaneously Localization and Mapping. Tröghetsmätningsenhetenanvänds för att estimera fordonets orientering baserat påett Attitude and Heading Reference System, som nyttjar Gradient Descent ochKalman Filter design. De optiska hjulsensorera och tröghetsmätningsenhetenutvärderas sedan separat för uppskattningen av fordonets position.Vidare sammanfogasresultaten från tröghetsmätningsenheten och hjulsensorera i ett ExtendedKalman Filter. Resultatet av filteret sammanfogas matchas sedan medresultatet från ljusradarn i ROS-paketet gmapping, som resulterar i SimultaneouslyLocalization and Mapping.Examensarbetet kommer presentera de olika sensoruppsättningarna i detaljoch utvärdera dess egenskaper. Tre olika realtidsexperiment är konstrueradeoch testade på varje sensoruppsättning. Alla experiment jämförs och utvärderasmed ett Motion Capture System monterat i Smart Mobility Lab’s lokal påKungliga Teknologiska Högskolan, Stockholm.
author Brusén, Niklas
author_facet Brusén, Niklas
author_sort Brusén, Niklas
title Simultaneous Localization and Mapping of a small-scale vehicle using low-cost IMU, optical wheel encoders and LiDAR
title_short Simultaneous Localization and Mapping of a small-scale vehicle using low-cost IMU, optical wheel encoders and LiDAR
title_full Simultaneous Localization and Mapping of a small-scale vehicle using low-cost IMU, optical wheel encoders and LiDAR
title_fullStr Simultaneous Localization and Mapping of a small-scale vehicle using low-cost IMU, optical wheel encoders and LiDAR
title_full_unstemmed Simultaneous Localization and Mapping of a small-scale vehicle using low-cost IMU, optical wheel encoders and LiDAR
title_sort simultaneous localization and mapping of a small-scale vehicle using low-cost imu, optical wheel encoders and lidar
publisher KTH, Skolan för elektroteknik och datavetenskap (EECS)
publishDate 2019
url http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276945
work_keys_str_mv AT brusenniklas simultaneouslocalizationandmappingofasmallscalevehicleusinglowcostimuopticalwheelencodersandlidar
_version_ 1719322284222578688