Deep Reinforcement Learning for Downlink Power Control in Dense 5G Networks

This thesis examines the problem of downlink power allocation in dense 5Gnetworks, and attempts to develop a data-driven solution by employing deepreinforcement learning. We train and test multiple reinforcement learningagents using the deep Q-networks (DQN) algorithm, and the so-called Rainbowexten...

Full description

Bibliographic Details
Main Author: Saeidian, Sara
Format: Others
Language:English
Published: KTH, Skolan för elektroteknik och datavetenskap (EECS) 2019
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-265675