Learning from noisy labelsby importance reweighting: : a deep learning approach
Noisy labels could cause severe degradation to the classification performance. Especially for deep neural networks, noisy labels can be memorized and lead to poor generalization. Recently label noise robust deep learning has outperformed traditional shallow learning approaches in handling complex in...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
KTH, Skolan för elektroteknik och datavetenskap (EECS)
2019
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264125 |
id |
ndltd-UPSALLA1-oai-DiVA.org-kth-264125 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-kth-2641252020-01-23T03:36:19ZLearning from noisy labelsby importance reweighting: : a deep learning approachengFang, TongtongKTH, Skolan för elektroteknik och datavetenskap (EECS)2019noisy labelimportance reweightingdeep learningdomain adaptationannoterad dataomviktningdjupt lärandedomänanpassningComputer and Information SciencesData- och informationsvetenskapNoisy labels could cause severe degradation to the classification performance. Especially for deep neural networks, noisy labels can be memorized and lead to poor generalization. Recently label noise robust deep learning has outperformed traditional shallow learning approaches in handling complex input data without prior knowledge of label noise generation. Learning from noisy labels by importance reweighting is well-studied. Existing work in this line using deep learning failed to provide reasonable importance reweighting criterion and thus got undesirable experimental performances. Targeting this knowledge gap and inspired by domain adaptation, we propose a novel label noise robust deep learning approach by importance reweighting. Noisy labeled training examples are weighted by minimizing the maximum mean discrepancy between the loss distributions of noisy labeled and clean labeled data. In experiments, the proposed approach outperforms other baselines. Results show a vast research potential of applying domain adaptation in label noise problem by bridging the two areas. Moreover, the proposed approach potentially motivate other interesting problems in domain adaptation by enabling importance reweighting to be used in deep learning. Felaktiga annoteringar kan sänka klassificeringsprestanda.Speciellt för djupa nätverk kan detta leda till dålig generalisering. Nyligen har brusrobust djup inlärning överträffat andra inlärningsmetoder när det gäller hantering av komplexa indata Befintligta resultat från djup inlärning kan dock inte tillhandahålla rimliga viktomfördelningskriterier. För att hantera detta kunskapsgap och inspirerat av domänanpassning föreslår vi en ny robust djup inlärningsmetod som använder omviktning. Omviktningen görs genom att minimera den maximala medelavvikelsen mellan förlustfördelningen av felmärkta och korrekt märkta data. I experiment slår den föreslagna metoden andra metoder. Resultaten visar en stor forskningspotential för att tillämpa domänanpassning. Dessutom motiverar den föreslagna metoden undersökningar av andra intressanta problem inom domänanpassning genom att möjliggöra smarta omviktningar. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264125TRITA-EECS-EX ; 2019:621application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
noisy label importance reweighting deep learning domain adaptation annoterad data omviktning djupt lärande domänanpassning Computer and Information Sciences Data- och informationsvetenskap |
spellingShingle |
noisy label importance reweighting deep learning domain adaptation annoterad data omviktning djupt lärande domänanpassning Computer and Information Sciences Data- och informationsvetenskap Fang, Tongtong Learning from noisy labelsby importance reweighting: : a deep learning approach |
description |
Noisy labels could cause severe degradation to the classification performance. Especially for deep neural networks, noisy labels can be memorized and lead to poor generalization. Recently label noise robust deep learning has outperformed traditional shallow learning approaches in handling complex input data without prior knowledge of label noise generation. Learning from noisy labels by importance reweighting is well-studied. Existing work in this line using deep learning failed to provide reasonable importance reweighting criterion and thus got undesirable experimental performances. Targeting this knowledge gap and inspired by domain adaptation, we propose a novel label noise robust deep learning approach by importance reweighting. Noisy labeled training examples are weighted by minimizing the maximum mean discrepancy between the loss distributions of noisy labeled and clean labeled data. In experiments, the proposed approach outperforms other baselines. Results show a vast research potential of applying domain adaptation in label noise problem by bridging the two areas. Moreover, the proposed approach potentially motivate other interesting problems in domain adaptation by enabling importance reweighting to be used in deep learning. === Felaktiga annoteringar kan sänka klassificeringsprestanda.Speciellt för djupa nätverk kan detta leda till dålig generalisering. Nyligen har brusrobust djup inlärning överträffat andra inlärningsmetoder när det gäller hantering av komplexa indata Befintligta resultat från djup inlärning kan dock inte tillhandahålla rimliga viktomfördelningskriterier. För att hantera detta kunskapsgap och inspirerat av domänanpassning föreslår vi en ny robust djup inlärningsmetod som använder omviktning. Omviktningen görs genom att minimera den maximala medelavvikelsen mellan förlustfördelningen av felmärkta och korrekt märkta data. I experiment slår den föreslagna metoden andra metoder. Resultaten visar en stor forskningspotential för att tillämpa domänanpassning. Dessutom motiverar den föreslagna metoden undersökningar av andra intressanta problem inom domänanpassning genom att möjliggöra smarta omviktningar. |
author |
Fang, Tongtong |
author_facet |
Fang, Tongtong |
author_sort |
Fang, Tongtong |
title |
Learning from noisy labelsby importance reweighting: : a deep learning approach |
title_short |
Learning from noisy labelsby importance reweighting: : a deep learning approach |
title_full |
Learning from noisy labelsby importance reweighting: : a deep learning approach |
title_fullStr |
Learning from noisy labelsby importance reweighting: : a deep learning approach |
title_full_unstemmed |
Learning from noisy labelsby importance reweighting: : a deep learning approach |
title_sort |
learning from noisy labelsby importance reweighting: : a deep learning approach |
publisher |
KTH, Skolan för elektroteknik och datavetenskap (EECS) |
publishDate |
2019 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264125 |
work_keys_str_mv |
AT fangtongtong learningfromnoisylabelsbyimportancereweightingadeeplearningapproach |
_version_ |
1719309545621159936 |