Measure face similarity based on deep learning

Measuring face similarity is a task in computer vision that is different from face recognition. It aims to find an embedding in which similar faces have a smaller distance than dissimilar ones. This project investigates two different Siamese networks to explore whether these specific networks outper...

Full description

Bibliographic Details
Main Author: Zhou, Chenyang
Format: Others
Language:English
Published: KTH, Skolan för elektroteknik och datavetenskap (EECS) 2019
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-262675
id ndltd-UPSALLA1-oai-DiVA.org-kth-262675
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-kth-2626752019-11-08T09:05:28ZMeasure face similarity based on deep learningengMätning av ansiktslikhet baserad på djupinlärningZhou, ChenyangKTH, Skolan för elektroteknik och datavetenskap (EECS)2019Computer and Information SciencesData- och informationsvetenskapMeasuring face similarity is a task in computer vision that is different from face recognition. It aims to find an embedding in which similar faces have a smaller distance than dissimilar ones. This project investigates two different Siamese networks to explore whether these specific networks outperform face recognition methods on face similarity. The best accuracy is from a Siamese convolution neural network, which is 65.11%. Moreover, the best results in a similarity ranking task are obtained from Siamese geometry-aware metric learning. Besides, this project creates a novel dataset with facial image pairs for face similarity. Mätning av ansiktslikhet är en uppgift i datorseende som skiljer sig från ansiktsigenkänning. Det syftar till att hitta en inbäddning där liknande ansikten har ett mindre avstånd än olika ansikten. Detta projekt undersöker två olika siamesiska nätverk för att utforska om dessa specifika nätverk överträffar ansiktsigenkänningsmetoder på ansiktslikhet. Den bästa noggrannheten är från ett Siamesiskt faltningsnätverk, vilket är 65,11%. Dessutom erhålls de bästa resultaten i en likhetsrankningsuppgift från Siamesisk geometrimedveten metrisk inlärning. Projektet skapar också ett nytt dataset med ansiktsbildpar för ansiktslikhet. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-262675TRITA-EECS-EX ; 2019:512application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic Computer and Information Sciences
Data- och informationsvetenskap
spellingShingle Computer and Information Sciences
Data- och informationsvetenskap
Zhou, Chenyang
Measure face similarity based on deep learning
description Measuring face similarity is a task in computer vision that is different from face recognition. It aims to find an embedding in which similar faces have a smaller distance than dissimilar ones. This project investigates two different Siamese networks to explore whether these specific networks outperform face recognition methods on face similarity. The best accuracy is from a Siamese convolution neural network, which is 65.11%. Moreover, the best results in a similarity ranking task are obtained from Siamese geometry-aware metric learning. Besides, this project creates a novel dataset with facial image pairs for face similarity. === Mätning av ansiktslikhet är en uppgift i datorseende som skiljer sig från ansiktsigenkänning. Det syftar till att hitta en inbäddning där liknande ansikten har ett mindre avstånd än olika ansikten. Detta projekt undersöker två olika siamesiska nätverk för att utforska om dessa specifika nätverk överträffar ansiktsigenkänningsmetoder på ansiktslikhet. Den bästa noggrannheten är från ett Siamesiskt faltningsnätverk, vilket är 65,11%. Dessutom erhålls de bästa resultaten i en likhetsrankningsuppgift från Siamesisk geometrimedveten metrisk inlärning. Projektet skapar också ett nytt dataset med ansiktsbildpar för ansiktslikhet.
author Zhou, Chenyang
author_facet Zhou, Chenyang
author_sort Zhou, Chenyang
title Measure face similarity based on deep learning
title_short Measure face similarity based on deep learning
title_full Measure face similarity based on deep learning
title_fullStr Measure face similarity based on deep learning
title_full_unstemmed Measure face similarity based on deep learning
title_sort measure face similarity based on deep learning
publisher KTH, Skolan för elektroteknik och datavetenskap (EECS)
publishDate 2019
url http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-262675
work_keys_str_mv AT zhouchenyang measurefacesimilaritybasedondeeplearning
AT zhouchenyang matningavansiktslikhetbaseradpadjupinlarning
_version_ 1719288590682292224