Efficient seakeeping performance predictions with CFD

With steadily increasing computational power, computational fluid dynamics (CFD) can be applied to unsteady problems such as seakeeping simulations. Therefore, a good balance between accuracy and computational speed is required. This thesis investigates the application of CFD to seakeeping performan...

Full description

Bibliographic Details
Main Author: Lagemann, Benjamin
Format: Others
Language:English
Published: KTH, Marina system 2019
Subjects:
CFD
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-261772
id ndltd-UPSALLA1-oai-DiVA.org-kth-261772
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-kth-2617722020-01-30T03:41:40ZEfficient seakeeping performance predictions with CFDengLagemann, BenjaminKTH, Marina system2019added wave resistanceCFDCourant-adapted time stepEuler ˛flowFINE /Marineinviscid flowk-ω SST-MenterKVLCC2RANSregular wavesseakeepingsub-cycling accelerationtime discretizationviscous flowVehicle EngineeringFarkostteknikWith steadily increasing computational power, computational fluid dynamics (CFD) can be applied to unsteady problems such as seakeeping simulations. Therefore, a good balance between accuracy and computational speed is required. This thesis investigates the application of CFD to seakeeping performance predictions and aims to propose a best-practice procedure for efficient seakeeping simulations. The widely used KVLCC2 research vessel serves as a test case for this thesis and FINEŠ/Marine software package is used for CFD computations. In order to validate the simulations, results are compared to recent experimental data from SSPA as well as predictions with potential ˛ow code SHIPFLOW® Motions. As for the calm water simulations, both inviscid and viscous ˛ow computations are performed in combination with three mesh refinement levels. Seakeeping simulations with regular head waves of different wavelengths are set-up correspondingly. Furthermore, different strategies for time discretization are investigated. With the given computational resources, it is not feasible to complete seakeeping simulations with a ˝ne mesh. However, already the coarse meshes give good agreement to experiments and SHIPFLOW® Motions' predictions. Viscous ˛ow simulations turn out to be more robust than Euler ˛ow computations and thus should be preferred. Regarding the time discretization, a fixed time discretization of 150 steps per wave period has shown the best balance between accuracy and speed. Based on these findings, a best-practice procedure for seakeeping performance predictions in FINEŠ/Marine is established. Taking the most efficient settings obtained from head wave simulations, the vessel is subjected to oblique waves with 160° encounter angle. Under similar wave conditions, CFD predictions of a similar thesis show close agreement in terms of added wave resistance. Compared to the previous head wave conditions of this study, added resistance in 160° oblique waves is found to be significantly higher. This underlines that oblique bow quartering waves represent a relevant case for determining the maximum required power of a ship. CFD and potential ˛ow show similar accuracy with respect to ship motions and added wave resistance, albeit potential ˛ow outperforms CFD in terms of computational speed. Hence, CFD should be applied in cases where viscous effects are known to have large influence on a vessel's seakeeping behavior. This can be the case if motion control and damping devices are to be evaluated, for instance. Tack vare den stadigt ökande beräkningskraften kan beräkningsuiddynamik (CFD) idag användas på beräkningsintensiva problem som sjöegenskapssimulationer. Den här rapporten undersöker användning av CFD på sjöegenskapsprestanda och syftar till att foreslå ett best-practice förfaringssätt för effektiv sjöegenskapssimulationer. Forskningsskrovet KVLCC2 fungerar som ett testfall för denna rapport och FINE—/Marine-mjukvarupaketet används för CFD-beräkningar. Viktiga parametrar, såsom ödestyp, beräkningsnät och tidssteg varierars systematiskt. Resultaten jämförs med experiment gjorda vid SSPA. Baserat på resultaten förelås en best-practice. Den föreslagna best-practice användas vidare för berökningar av sjöegenskaper i sneda vågor. Jämförelse av resultaten med liknande studier visar god överensstämmelse. Genom att använda det föreslagna förfarandet för best-practice kan CFD-sjöegenskapssimulationer användas på fall där viskösa krafter måste beaktas, till exempel rörelseregleringsanordningar. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-261772TRITA-SCI-GRU ; 2019:290application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic added wave resistance
CFD
Courant-adapted time step
Euler ˛flow
FINE /Marine
inviscid flow
k-ω SST-Menter
KVLCC2
RANS
regular waves
seakeeping
sub-cycling acceleration
time discretization
viscous flow
Vehicle Engineering
Farkostteknik
spellingShingle added wave resistance
CFD
Courant-adapted time step
Euler ˛flow
FINE /Marine
inviscid flow
k-ω SST-Menter
KVLCC2
RANS
regular waves
seakeeping
sub-cycling acceleration
time discretization
viscous flow
Vehicle Engineering
Farkostteknik
Lagemann, Benjamin
Efficient seakeeping performance predictions with CFD
description With steadily increasing computational power, computational fluid dynamics (CFD) can be applied to unsteady problems such as seakeeping simulations. Therefore, a good balance between accuracy and computational speed is required. This thesis investigates the application of CFD to seakeeping performance predictions and aims to propose a best-practice procedure for efficient seakeeping simulations. The widely used KVLCC2 research vessel serves as a test case for this thesis and FINEŠ/Marine software package is used for CFD computations. In order to validate the simulations, results are compared to recent experimental data from SSPA as well as predictions with potential ˛ow code SHIPFLOW® Motions. As for the calm water simulations, both inviscid and viscous ˛ow computations are performed in combination with three mesh refinement levels. Seakeeping simulations with regular head waves of different wavelengths are set-up correspondingly. Furthermore, different strategies for time discretization are investigated. With the given computational resources, it is not feasible to complete seakeeping simulations with a ˝ne mesh. However, already the coarse meshes give good agreement to experiments and SHIPFLOW® Motions' predictions. Viscous ˛ow simulations turn out to be more robust than Euler ˛ow computations and thus should be preferred. Regarding the time discretization, a fixed time discretization of 150 steps per wave period has shown the best balance between accuracy and speed. Based on these findings, a best-practice procedure for seakeeping performance predictions in FINEŠ/Marine is established. Taking the most efficient settings obtained from head wave simulations, the vessel is subjected to oblique waves with 160° encounter angle. Under similar wave conditions, CFD predictions of a similar thesis show close agreement in terms of added wave resistance. Compared to the previous head wave conditions of this study, added resistance in 160° oblique waves is found to be significantly higher. This underlines that oblique bow quartering waves represent a relevant case for determining the maximum required power of a ship. CFD and potential ˛ow show similar accuracy with respect to ship motions and added wave resistance, albeit potential ˛ow outperforms CFD in terms of computational speed. Hence, CFD should be applied in cases where viscous effects are known to have large influence on a vessel's seakeeping behavior. This can be the case if motion control and damping devices are to be evaluated, for instance. === Tack vare den stadigt ökande beräkningskraften kan beräkningsuiddynamik (CFD) idag användas på beräkningsintensiva problem som sjöegenskapssimulationer. Den här rapporten undersöker användning av CFD på sjöegenskapsprestanda och syftar till att foreslå ett best-practice förfaringssätt för effektiv sjöegenskapssimulationer. Forskningsskrovet KVLCC2 fungerar som ett testfall för denna rapport och FINE—/Marine-mjukvarupaketet används för CFD-beräkningar. Viktiga parametrar, såsom ödestyp, beräkningsnät och tidssteg varierars systematiskt. Resultaten jämförs med experiment gjorda vid SSPA. Baserat på resultaten förelås en best-practice. Den föreslagna best-practice användas vidare för berökningar av sjöegenskaper i sneda vågor. Jämförelse av resultaten med liknande studier visar god överensstämmelse. Genom att använda det föreslagna förfarandet för best-practice kan CFD-sjöegenskapssimulationer användas på fall där viskösa krafter måste beaktas, till exempel rörelseregleringsanordningar.
author Lagemann, Benjamin
author_facet Lagemann, Benjamin
author_sort Lagemann, Benjamin
title Efficient seakeeping performance predictions with CFD
title_short Efficient seakeeping performance predictions with CFD
title_full Efficient seakeeping performance predictions with CFD
title_fullStr Efficient seakeeping performance predictions with CFD
title_full_unstemmed Efficient seakeeping performance predictions with CFD
title_sort efficient seakeeping performance predictions with cfd
publisher KTH, Marina system
publishDate 2019
url http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-261772
work_keys_str_mv AT lagemannbenjamin efficientseakeepingperformancepredictionswithcfd
_version_ 1719310652528394240