An Evaluation of the Great Deluge Algorithm in Course Timetabling : As Applied to the KTH-Inspired University Course Timetabling Problem

The University Course Timetabling Problem (UCTP) can be loosely described as assigning events (e.g lectures) to rooms and timeslots in a way that results in a feasible timetable that is optimal according to some custom criteria. The problem has become increasingly relevant as more programs become av...

Full description

Bibliographic Details
Main Authors: Chammas, Kristoffer, Sirak, Simon
Format: Others
Language:English
Published: KTH, Skolan för elektroteknik och datavetenskap (EECS) 2019
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259907
id ndltd-UPSALLA1-oai-DiVA.org-kth-259907
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-kth-2599072019-10-03T04:33:56ZAn Evaluation of the Great Deluge Algorithm in Course Timetabling : As Applied to the KTH-Inspired University Course Timetabling ProblemengEn utvärdering av The Great Deluge på KTH-inspirerade University Course Timetabling ProblemChammas, KristofferSirak, SimonKTH, Skolan för elektroteknik och datavetenskap (EECS)KTH, Skolan för elektroteknik och datavetenskap (EECS)2019Computer and Information SciencesData- och informationsvetenskapThe University Course Timetabling Problem (UCTP) can be loosely described as assigning events (e.g lectures) to rooms and timeslots in a way that results in a feasible timetable that is optimal according to some custom criteria. The problem has become increasingly relevant as more programs become available in universities. Due to the complexity of UCTP, the problem is usually solved approximately using heuristics. The KTH-inspired UCTP is a variant of the UCTP that is adapted to KTH Royal Institute of Technology. However, few heuristics have been implemented for this variant of UCTP. Therefore, this study introduces an implementation of The Great Deluge heuristic to the KTH-inspired UCTP, and compares it to a state-of-the-art solver for KTH-inspired UCTP. The Great Deluge implementation was compared against the state-of-the-art KTH-inspired UCTP solver for different time limits. For each time limit, the output timetable quality was recorded over several executions. The comparison was done on two problem instances of varying complexity. The results suggest a behavior that varies over time. For larger time limits, GD produced better timetables than the state-of-the-art and the overall quality of timetables was consistent over several executions. For smaller time limits, GD produced worse timetables than the state-of-the-art and the overall quality of timetables was inconsistent over several executions. A few potential causes for the improved performance during the later stages of execution were found through further analysis of the results. Perhaps the biggest potential cause was utilizing the greedy behavior obtained during the mid to late stages of execution. ”The University Course Timetabling Problem” (UCTP) handlar i grova drag om att, baserat på ett antal kriterier, schemalägga föreläsningar, övningar och laborationer på ett optimalt sätt. Problemets relevans har ökat allt eftersom universitet utökar sina programutbud. På grund av komplexiteten hos UCTP löses problemet vanligtvis approximativt med hjälp av heuristiker. ”KTH-inspired UCTP” är en KTH-anpassad variant av UCTP för vilken endast ett fåtal heuristiker har implementerats. Denna variant har exempelvis inte lösts av en vanlig heuristik inom UCTP, ”The Great Deluge” (GD). Denna studie fokuserar därför på att applicera GD på ”KTH-inspired UCTP” och jämföra denna med äldre implementationer, med fokus på den bästa tillgängliga implementationen. GD-implementationen jämförs med den bästa tillgängliga implementationen för ”KTH-inspired UCTP” för olika tidsgränser. Kvaliteten hos de resulterande schemana evalueras och sparas sedan över flera körningar. Jämförelsen gjordes på två probleminstanser av olika komplexitet. Resultatet av jämförelsen föreslår att GD producerade bättre scheman för högre tidsgränser men sämre scheman för lägre tidsgränser. Vidare analys föreslår att denna förbättring beror på utnyttjandet av det giriga beteendet som vår GD-implementation uppvisar vid senare delar av exekvering. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259907TRITA-EECS-EX ; 2019:359application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic Computer and Information Sciences
Data- och informationsvetenskap
spellingShingle Computer and Information Sciences
Data- och informationsvetenskap
Chammas, Kristoffer
Sirak, Simon
An Evaluation of the Great Deluge Algorithm in Course Timetabling : As Applied to the KTH-Inspired University Course Timetabling Problem
description The University Course Timetabling Problem (UCTP) can be loosely described as assigning events (e.g lectures) to rooms and timeslots in a way that results in a feasible timetable that is optimal according to some custom criteria. The problem has become increasingly relevant as more programs become available in universities. Due to the complexity of UCTP, the problem is usually solved approximately using heuristics. The KTH-inspired UCTP is a variant of the UCTP that is adapted to KTH Royal Institute of Technology. However, few heuristics have been implemented for this variant of UCTP. Therefore, this study introduces an implementation of The Great Deluge heuristic to the KTH-inspired UCTP, and compares it to a state-of-the-art solver for KTH-inspired UCTP. The Great Deluge implementation was compared against the state-of-the-art KTH-inspired UCTP solver for different time limits. For each time limit, the output timetable quality was recorded over several executions. The comparison was done on two problem instances of varying complexity. The results suggest a behavior that varies over time. For larger time limits, GD produced better timetables than the state-of-the-art and the overall quality of timetables was consistent over several executions. For smaller time limits, GD produced worse timetables than the state-of-the-art and the overall quality of timetables was inconsistent over several executions. A few potential causes for the improved performance during the later stages of execution were found through further analysis of the results. Perhaps the biggest potential cause was utilizing the greedy behavior obtained during the mid to late stages of execution. === ”The University Course Timetabling Problem” (UCTP) handlar i grova drag om att, baserat på ett antal kriterier, schemalägga föreläsningar, övningar och laborationer på ett optimalt sätt. Problemets relevans har ökat allt eftersom universitet utökar sina programutbud. På grund av komplexiteten hos UCTP löses problemet vanligtvis approximativt med hjälp av heuristiker. ”KTH-inspired UCTP” är en KTH-anpassad variant av UCTP för vilken endast ett fåtal heuristiker har implementerats. Denna variant har exempelvis inte lösts av en vanlig heuristik inom UCTP, ”The Great Deluge” (GD). Denna studie fokuserar därför på att applicera GD på ”KTH-inspired UCTP” och jämföra denna med äldre implementationer, med fokus på den bästa tillgängliga implementationen. GD-implementationen jämförs med den bästa tillgängliga implementationen för ”KTH-inspired UCTP” för olika tidsgränser. Kvaliteten hos de resulterande schemana evalueras och sparas sedan över flera körningar. Jämförelsen gjordes på två probleminstanser av olika komplexitet. Resultatet av jämförelsen föreslår att GD producerade bättre scheman för högre tidsgränser men sämre scheman för lägre tidsgränser. Vidare analys föreslår att denna förbättring beror på utnyttjandet av det giriga beteendet som vår GD-implementation uppvisar vid senare delar av exekvering.
author Chammas, Kristoffer
Sirak, Simon
author_facet Chammas, Kristoffer
Sirak, Simon
author_sort Chammas, Kristoffer
title An Evaluation of the Great Deluge Algorithm in Course Timetabling : As Applied to the KTH-Inspired University Course Timetabling Problem
title_short An Evaluation of the Great Deluge Algorithm in Course Timetabling : As Applied to the KTH-Inspired University Course Timetabling Problem
title_full An Evaluation of the Great Deluge Algorithm in Course Timetabling : As Applied to the KTH-Inspired University Course Timetabling Problem
title_fullStr An Evaluation of the Great Deluge Algorithm in Course Timetabling : As Applied to the KTH-Inspired University Course Timetabling Problem
title_full_unstemmed An Evaluation of the Great Deluge Algorithm in Course Timetabling : As Applied to the KTH-Inspired University Course Timetabling Problem
title_sort evaluation of the great deluge algorithm in course timetabling : as applied to the kth-inspired university course timetabling problem
publisher KTH, Skolan för elektroteknik och datavetenskap (EECS)
publishDate 2019
url http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259907
work_keys_str_mv AT chammaskristoffer anevaluationofthegreatdelugealgorithmincoursetimetablingasappliedtothekthinspireduniversitycoursetimetablingproblem
AT siraksimon anevaluationofthegreatdelugealgorithmincoursetimetablingasappliedtothekthinspireduniversitycoursetimetablingproblem
AT chammaskristoffer enutvarderingavthegreatdelugepakthinspireradeuniversitycoursetimetablingproblem
AT siraksimon enutvarderingavthegreatdelugepakthinspireradeuniversitycoursetimetablingproblem
AT chammaskristoffer evaluationofthegreatdelugealgorithmincoursetimetablingasappliedtothekthinspireduniversitycoursetimetablingproblem
AT siraksimon evaluationofthegreatdelugealgorithmincoursetimetablingasappliedtothekthinspireduniversitycoursetimetablingproblem
_version_ 1719259921942315008