A comparative study between a genetic algorithm and a simulated annealing algorithm for solving the order batching problem

Optimizing warehouse automation requires finding efficient routes for pickingup items. Dividing the orders into batches is a realistic requirement for warehouses to have. This problem, known as the order batching problem, is an NP-hard problem. This thesis implements and compares two meta-heuristics...

Full description

Bibliographic Details
Main Authors: Ardö, Edvin, Lindholm, Johan
Format: Others
Language:English
Published: KTH, Skolan för elektroteknik och datavetenskap (EECS) 2019
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254929
id ndltd-UPSALLA1-oai-DiVA.org-kth-254929
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-kth-2549292019-07-30T04:29:11ZA comparative study between a genetic algorithm and a simulated annealing algorithm for solving the order batching problemengEn jämförande studie mellan en genetisk algoritm och simulated annealing för att lösa order batching problemetArdö, EdvinLindholm, JohanKTH, Skolan för elektroteknik och datavetenskap (EECS)KTH, Skolan för elektroteknik och datavetenskap (EECS)2019Computer and Information SciencesData- och informationsvetenskapOptimizing warehouse automation requires finding efficient routes for pickingup items. Dividing the orders into batches is a realistic requirement for warehouses to have. This problem, known as the order batching problem, is an NP-hard problem. This thesis implements and compares two meta-heuristics to the order batching problem, simulated annealing (SA) and a genetic algorithm(GA). SA was found to perform equal to or better than GA on all occasions in terms of minimizing traveling distance. The algorithms were tested on 6 different warehouses with various layouts. The algorithms performed similarly on the smallest problem size, but in the largest problem size SA managed to find 17.1 % shorter solutions than GA. SA tended to find shorter solutions in a smaller amount of time as well. Optimering av automatiserade varuhuslager kräver att effektiva rutter hittas för att hämta upp varor. Att dela upp ordrarna i grupper är ett realistiskt krav som lager kan ha. Detta problem, som kallas för order batching-problemet, är ett NP-svårt problem. Detta kandidatarbete jämför två implementationer av meta-heuristiker till order batching-problemet, simulated annealing (SA) och genetic algorithm (GA). SA visade sig vara lika bra eller bättre än GA vid alla tillfällen då målet är att minimera den totala färdsträckan. Algoritmen testades på 6 olika varuhus som hade olika designer. Algoritmerna kom fram till liknande lösningar för de minsta varuhusen, men i det största varuhuset lyckades SA hitta en lösning som var 17.1 % bättre än GA. SA tenderade även att hitta kortare lösningar givet mindre tid. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254929TRITA-EECS-EX ; 2019:313application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic Computer and Information Sciences
Data- och informationsvetenskap
spellingShingle Computer and Information Sciences
Data- och informationsvetenskap
Ardö, Edvin
Lindholm, Johan
A comparative study between a genetic algorithm and a simulated annealing algorithm for solving the order batching problem
description Optimizing warehouse automation requires finding efficient routes for pickingup items. Dividing the orders into batches is a realistic requirement for warehouses to have. This problem, known as the order batching problem, is an NP-hard problem. This thesis implements and compares two meta-heuristics to the order batching problem, simulated annealing (SA) and a genetic algorithm(GA). SA was found to perform equal to or better than GA on all occasions in terms of minimizing traveling distance. The algorithms were tested on 6 different warehouses with various layouts. The algorithms performed similarly on the smallest problem size, but in the largest problem size SA managed to find 17.1 % shorter solutions than GA. SA tended to find shorter solutions in a smaller amount of time as well. === Optimering av automatiserade varuhuslager kräver att effektiva rutter hittas för att hämta upp varor. Att dela upp ordrarna i grupper är ett realistiskt krav som lager kan ha. Detta problem, som kallas för order batching-problemet, är ett NP-svårt problem. Detta kandidatarbete jämför två implementationer av meta-heuristiker till order batching-problemet, simulated annealing (SA) och genetic algorithm (GA). SA visade sig vara lika bra eller bättre än GA vid alla tillfällen då målet är att minimera den totala färdsträckan. Algoritmen testades på 6 olika varuhus som hade olika designer. Algoritmerna kom fram till liknande lösningar för de minsta varuhusen, men i det största varuhuset lyckades SA hitta en lösning som var 17.1 % bättre än GA. SA tenderade även att hitta kortare lösningar givet mindre tid.
author Ardö, Edvin
Lindholm, Johan
author_facet Ardö, Edvin
Lindholm, Johan
author_sort Ardö, Edvin
title A comparative study between a genetic algorithm and a simulated annealing algorithm for solving the order batching problem
title_short A comparative study between a genetic algorithm and a simulated annealing algorithm for solving the order batching problem
title_full A comparative study between a genetic algorithm and a simulated annealing algorithm for solving the order batching problem
title_fullStr A comparative study between a genetic algorithm and a simulated annealing algorithm for solving the order batching problem
title_full_unstemmed A comparative study between a genetic algorithm and a simulated annealing algorithm for solving the order batching problem
title_sort comparative study between a genetic algorithm and a simulated annealing algorithm for solving the order batching problem
publisher KTH, Skolan för elektroteknik och datavetenskap (EECS)
publishDate 2019
url http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254929
work_keys_str_mv AT ardoedvin acomparativestudybetweenageneticalgorithmandasimulatedannealingalgorithmforsolvingtheorderbatchingproblem
AT lindholmjohan acomparativestudybetweenageneticalgorithmandasimulatedannealingalgorithmforsolvingtheorderbatchingproblem
AT ardoedvin enjamforandestudiemellanengenetiskalgoritmochsimulatedannealingforattlosaorderbatchingproblemet
AT lindholmjohan enjamforandestudiemellanengenetiskalgoritmochsimulatedannealingforattlosaorderbatchingproblemet
AT ardoedvin comparativestudybetweenageneticalgorithmandasimulatedannealingalgorithmforsolvingtheorderbatchingproblem
AT lindholmjohan comparativestudybetweenageneticalgorithmandasimulatedannealingalgorithmforsolvingtheorderbatchingproblem
_version_ 1719231620552065024