A comparative study between a genetic algorithm and a simulated annealing algorithm for solving the order batching problem
Optimizing warehouse automation requires finding efficient routes for pickingup items. Dividing the orders into batches is a realistic requirement for warehouses to have. This problem, known as the order batching problem, is an NP-hard problem. This thesis implements and compares two meta-heuristics...
Main Authors: | , |
---|---|
Format: | Others |
Language: | English |
Published: |
KTH, Skolan för elektroteknik och datavetenskap (EECS)
2019
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254929 |
id |
ndltd-UPSALLA1-oai-DiVA.org-kth-254929 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-kth-2549292019-07-30T04:29:11ZA comparative study between a genetic algorithm and a simulated annealing algorithm for solving the order batching problemengEn jämförande studie mellan en genetisk algoritm och simulated annealing för att lösa order batching problemetArdö, EdvinLindholm, JohanKTH, Skolan för elektroteknik och datavetenskap (EECS)KTH, Skolan för elektroteknik och datavetenskap (EECS)2019Computer and Information SciencesData- och informationsvetenskapOptimizing warehouse automation requires finding efficient routes for pickingup items. Dividing the orders into batches is a realistic requirement for warehouses to have. This problem, known as the order batching problem, is an NP-hard problem. This thesis implements and compares two meta-heuristics to the order batching problem, simulated annealing (SA) and a genetic algorithm(GA). SA was found to perform equal to or better than GA on all occasions in terms of minimizing traveling distance. The algorithms were tested on 6 different warehouses with various layouts. The algorithms performed similarly on the smallest problem size, but in the largest problem size SA managed to find 17.1 % shorter solutions than GA. SA tended to find shorter solutions in a smaller amount of time as well. Optimering av automatiserade varuhuslager kräver att effektiva rutter hittas för att hämta upp varor. Att dela upp ordrarna i grupper är ett realistiskt krav som lager kan ha. Detta problem, som kallas för order batching-problemet, är ett NP-svårt problem. Detta kandidatarbete jämför två implementationer av meta-heuristiker till order batching-problemet, simulated annealing (SA) och genetic algorithm (GA). SA visade sig vara lika bra eller bättre än GA vid alla tillfällen då målet är att minimera den totala färdsträckan. Algoritmen testades på 6 olika varuhus som hade olika designer. Algoritmerna kom fram till liknande lösningar för de minsta varuhusen, men i det största varuhuset lyckades SA hitta en lösning som var 17.1 % bättre än GA. SA tenderade även att hitta kortare lösningar givet mindre tid. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254929TRITA-EECS-EX ; 2019:313application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Computer and Information Sciences Data- och informationsvetenskap |
spellingShingle |
Computer and Information Sciences Data- och informationsvetenskap Ardö, Edvin Lindholm, Johan A comparative study between a genetic algorithm and a simulated annealing algorithm for solving the order batching problem |
description |
Optimizing warehouse automation requires finding efficient routes for pickingup items. Dividing the orders into batches is a realistic requirement for warehouses to have. This problem, known as the order batching problem, is an NP-hard problem. This thesis implements and compares two meta-heuristics to the order batching problem, simulated annealing (SA) and a genetic algorithm(GA). SA was found to perform equal to or better than GA on all occasions in terms of minimizing traveling distance. The algorithms were tested on 6 different warehouses with various layouts. The algorithms performed similarly on the smallest problem size, but in the largest problem size SA managed to find 17.1 % shorter solutions than GA. SA tended to find shorter solutions in a smaller amount of time as well. === Optimering av automatiserade varuhuslager kräver att effektiva rutter hittas för att hämta upp varor. Att dela upp ordrarna i grupper är ett realistiskt krav som lager kan ha. Detta problem, som kallas för order batching-problemet, är ett NP-svårt problem. Detta kandidatarbete jämför två implementationer av meta-heuristiker till order batching-problemet, simulated annealing (SA) och genetic algorithm (GA). SA visade sig vara lika bra eller bättre än GA vid alla tillfällen då målet är att minimera den totala färdsträckan. Algoritmen testades på 6 olika varuhus som hade olika designer. Algoritmerna kom fram till liknande lösningar för de minsta varuhusen, men i det största varuhuset lyckades SA hitta en lösning som var 17.1 % bättre än GA. SA tenderade även att hitta kortare lösningar givet mindre tid. |
author |
Ardö, Edvin Lindholm, Johan |
author_facet |
Ardö, Edvin Lindholm, Johan |
author_sort |
Ardö, Edvin |
title |
A comparative study between a genetic algorithm and a simulated annealing algorithm for solving the order batching problem |
title_short |
A comparative study between a genetic algorithm and a simulated annealing algorithm for solving the order batching problem |
title_full |
A comparative study between a genetic algorithm and a simulated annealing algorithm for solving the order batching problem |
title_fullStr |
A comparative study between a genetic algorithm and a simulated annealing algorithm for solving the order batching problem |
title_full_unstemmed |
A comparative study between a genetic algorithm and a simulated annealing algorithm for solving the order batching problem |
title_sort |
comparative study between a genetic algorithm and a simulated annealing algorithm for solving the order batching problem |
publisher |
KTH, Skolan för elektroteknik och datavetenskap (EECS) |
publishDate |
2019 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254929 |
work_keys_str_mv |
AT ardoedvin acomparativestudybetweenageneticalgorithmandasimulatedannealingalgorithmforsolvingtheorderbatchingproblem AT lindholmjohan acomparativestudybetweenageneticalgorithmandasimulatedannealingalgorithmforsolvingtheorderbatchingproblem AT ardoedvin enjamforandestudiemellanengenetiskalgoritmochsimulatedannealingforattlosaorderbatchingproblemet AT lindholmjohan enjamforandestudiemellanengenetiskalgoritmochsimulatedannealingforattlosaorderbatchingproblemet AT ardoedvin comparativestudybetweenageneticalgorithmandasimulatedannealingalgorithmforsolvingtheorderbatchingproblem AT lindholmjohan comparativestudybetweenageneticalgorithmandasimulatedannealingalgorithmforsolvingtheorderbatchingproblem |
_version_ |
1719231620552065024 |