Quantifying uncertainty in structural condition with Bayesian deep learning : A study on the Z-24 bridge benchmark
A machine learning approach to damage detection is presented for a bridge structural health monitoring system, validated on the renowned Z-24 bridge benchmark dataset where a sensor instrumented, threespan bridge was realistically damaged in stages. A Bayesian autoencoder neural network is trained t...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
KTH, Skolan för elektroteknik och datavetenskap (EECS)
2019
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-251451 |
id |
ndltd-UPSALLA1-oai-DiVA.org-kth-251451 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-kth-2514512019-05-25T04:29:02ZQuantifying uncertainty in structural condition with Bayesian deep learning : A study on the Z-24 bridge benchmarkengKvantifiering av osäkerhet i strukturella tillstånd med Bayesiansk djupinlärningAsgrimsson, David SteinarKTH, Skolan för elektroteknik och datavetenskap (EECS)2019Bayesian Deep LearningAutoencodersBridge Structural Health MonitoringBridge Damage DetectionComputer and Information SciencesData- och informationsvetenskapA machine learning approach to damage detection is presented for a bridge structural health monitoring system, validated on the renowned Z-24 bridge benchmark dataset where a sensor instrumented, threespan bridge was realistically damaged in stages. A Bayesian autoencoder neural network is trained to reconstruct raw sensor data sequences, with uncertainty bounds in prediction. The reconstruction error is then compared with a healthy-state error distribution and the sequence determined to come from a healthy state or not. Several realistic damage stages were successfully detected, making this a viable approach in a data-based monitoring system of an operational bridge. This is a fully operational, machine learning based bridge damage detection system, that is learned directly from raw sensor data. En maskininlärningsmetod för strukturell skadedetektering av broar presenteras. Metoden valideras på det kända referensdataset Z-24, där en sensor-instrumenterad trespannsbro stegvist skadats. Ett Bayesianskt neuralt nätverk med autoenkoders tränas till att rekonstruera råa sensordatasekvenser, med osäkerhetsgränser i förutsägningen. Rekonstrueringsavvikelsen jämförs med avvikelsesfördelningen i oskadat tillstånd och sekvensen bedöms att komma från ett skadad eller icke skadat tillstånd. Flera realistiska stegvisa skadetillstånd upptäcktes, vilket gör metoden användbar i ett databaserat skadedetektionssystem för en bro i full storlek. Detta är ett lovande steg mot ett helt operativt databaserat skadedetektionssystem. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-251451TRITA-EECS-EX ; 101application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Bayesian Deep Learning Autoencoders Bridge Structural Health Monitoring Bridge Damage Detection Computer and Information Sciences Data- och informationsvetenskap |
spellingShingle |
Bayesian Deep Learning Autoencoders Bridge Structural Health Monitoring Bridge Damage Detection Computer and Information Sciences Data- och informationsvetenskap Asgrimsson, David Steinar Quantifying uncertainty in structural condition with Bayesian deep learning : A study on the Z-24 bridge benchmark |
description |
A machine learning approach to damage detection is presented for a bridge structural health monitoring system, validated on the renowned Z-24 bridge benchmark dataset where a sensor instrumented, threespan bridge was realistically damaged in stages. A Bayesian autoencoder neural network is trained to reconstruct raw sensor data sequences, with uncertainty bounds in prediction. The reconstruction error is then compared with a healthy-state error distribution and the sequence determined to come from a healthy state or not. Several realistic damage stages were successfully detected, making this a viable approach in a data-based monitoring system of an operational bridge. This is a fully operational, machine learning based bridge damage detection system, that is learned directly from raw sensor data. === En maskininlärningsmetod för strukturell skadedetektering av broar presenteras. Metoden valideras på det kända referensdataset Z-24, där en sensor-instrumenterad trespannsbro stegvist skadats. Ett Bayesianskt neuralt nätverk med autoenkoders tränas till att rekonstruera råa sensordatasekvenser, med osäkerhetsgränser i förutsägningen. Rekonstrueringsavvikelsen jämförs med avvikelsesfördelningen i oskadat tillstånd och sekvensen bedöms att komma från ett skadad eller icke skadat tillstånd. Flera realistiska stegvisa skadetillstånd upptäcktes, vilket gör metoden användbar i ett databaserat skadedetektionssystem för en bro i full storlek. Detta är ett lovande steg mot ett helt operativt databaserat skadedetektionssystem. |
author |
Asgrimsson, David Steinar |
author_facet |
Asgrimsson, David Steinar |
author_sort |
Asgrimsson, David Steinar |
title |
Quantifying uncertainty in structural condition with Bayesian deep learning : A study on the Z-24 bridge benchmark |
title_short |
Quantifying uncertainty in structural condition with Bayesian deep learning : A study on the Z-24 bridge benchmark |
title_full |
Quantifying uncertainty in structural condition with Bayesian deep learning : A study on the Z-24 bridge benchmark |
title_fullStr |
Quantifying uncertainty in structural condition with Bayesian deep learning : A study on the Z-24 bridge benchmark |
title_full_unstemmed |
Quantifying uncertainty in structural condition with Bayesian deep learning : A study on the Z-24 bridge benchmark |
title_sort |
quantifying uncertainty in structural condition with bayesian deep learning : a study on the z-24 bridge benchmark |
publisher |
KTH, Skolan för elektroteknik och datavetenskap (EECS) |
publishDate |
2019 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-251451 |
work_keys_str_mv |
AT asgrimssondavidsteinar quantifyinguncertaintyinstructuralconditionwithbayesiandeeplearningastudyonthez24bridgebenchmark AT asgrimssondavidsteinar kvantifieringavosakerhetistrukturellatillstandmedbayesianskdjupinlarning |
_version_ |
1719192462536212480 |