JÄMFÖRELSE AV ATTITYDANALYS ALGORITMER FÖR SPELOMDÖMEN

Idag finns det stora mängder användar-skapat data i form av texter från spelomdömen till åsikter i mikro-bloggar som Twitter. Att analysera detta data kan vara utav värde för både företag och akademisk forskning men är väldigt omfattande. Med hjälp av attitydanalysen kan detta utföras automatiskt oc...

Full description

Bibliographic Details
Main Authors: Gernandt, Niclas, Farhod, Jaser
Format: Others
Language:Swedish
Published: KTH, Hälsoinformatik och logistik 2019
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-248401
Description
Summary:Idag finns det stora mängder användar-skapat data i form av texter från spelomdömen till åsikter i mikro-bloggar som Twitter. Att analysera detta data kan vara utav värde för både företag och akademisk forskning men är väldigt omfattande. Med hjälp av attitydanalysen kan detta utföras automatiskt och spara resurser, men vilka algoritmer presterar bäst? Med hjälp av en förstudie och ett par kvantitativa tester kunde dem mest populära tillvägagångsätten inom attitydanalysen genom att analysera spelomdömen från plattformen Steam. I testning har det visat sig att maskininlärningsalgoritmer både presterar bättre och är enklare att komma igång i jämförelse med lexikonbaserade algoritmer som knappast uppnår tröskelvärdet för pålitlighet vid klassifikation av omdömen som positiva eller negativa. Men det är fortfarande viktigt anpassa attitydanalysen för just det specifika problemet eftersom båda dessa har sina brister eftersom båda dessa tillvägagångsätt hade en dålig prestation i förhållande till sarkastiska omdömen. === Today there exist a huge amount of user created content in the shape of text from game reviews to opinions in microblogs like Twitter. To analyze this data could be of value for both companies and data scientists but remains to be very daunting. With the help of sentiment analysis this could be achieved automatically and save resources, but the question remains which algorithms have the best performance? With the help of a study and a couple of tests the most popular approaches in sentiment analysis could be compared by analyzing game reviews from the platform Steam. Through testing it has showed that machine learning based algorithms have the best performance and are easier to start with in comparison to lexicon-based approaches, which barely even reach the threshold for reliability in classifying reviews to be positive or negative. But it’s still important to plan and consider which algorithm one chooses for sentiment analysis as both approaches have their flaws and had a weak performance regarding sarcastic reviews.