Ionic Conducting Composite as Electrolyte forLow Temperature Solid Oxide Fuel Cells

Solid oxide fuel cells (SOFCs) are considered as one of the most promising powergeneration technologies due to their high energy conversion efficiency, fuel flexibilityand reduced pollution. The current SOFCs with yttria-stabilized zirconia (YSZ)electrolyte require high operation temperature (800-10...

Full description

Bibliographic Details
Main Author: Wang, Xiaodi
Format: Others
Language:English
Published: KTH, Funktionella material, FNM 2010
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-24723
http://nbn-resolving.de/urn:isbn:978-91-7415-670-6
Description
Summary:Solid oxide fuel cells (SOFCs) are considered as one of the most promising powergeneration technologies due to their high energy conversion efficiency, fuel flexibilityand reduced pollution. The current SOFCs with yttria-stabilized zirconia (YSZ)electrolyte require high operation temperature (800-1000 °C), which not only hinderstheir broad commercialization due to associated high cost and technologicalcomplications. Therefore, there is a broad interest in reducing the operating temperatureof SOFCs. The key to development of low-temperature SOFCs (LTSOFCs) is to explorenew electrolyte materials with high ionic conductivity at such low temperature (300-600 °C).Recently, ceria-based composite electrolyte, consisting of doped cerium oxide mixedwith a second phase (e.g. Na2CO3), has been investigated as a promising electrolyte forLTSOFCs. The ceria-based composite electrolyte has shown a high ionic conductivityand improved fuel cell performance below 600 °C. However, at present the developmentof composite electrolyte materials and their application in LTSOFCs are still at an initialstage. This thesis aims at exploring new composite systems for LTSOFCs with superiorproperties, and investigates conductivity behavior of the electrolyte. Two compositesystems for SOFCs have been studied in the thesis.In the first system, a novel concept of non-ceria-salt-composites electrolyte, LiAlO2-carbonate (Li2CO3-Na2CO3) composite electrolyte, was investigated for SOFCs. TheLiAlO2-carbonate electrolyte exhibited good conductivity and excellent fuel cellperformances below 650 oC. The ion transport mechanism of the LiAlO2-carbonatecomposite electrolyte was studied. The results indicated that the high ionic conductivityrelates to the interface effect between oxide and carbonate.In the second system, we reported a novel core-shell samarium-doped ceria(SDC)/Na2CO3 nanocomposite which is proposed for the first time, since the interface isdominant in the nanostructured composite materials. The core-shell nanocompositeparticles are smaller than 100 nm with amorphous Na2CO3 shell. The nanocompositeelectrolyte was applied in LTSOFCs and showed excellent performance. Theconductivity behavior and charge carriers have been studied. The results indicated that H+conductivity in SDC/Na2CO3 nanocomposite is predominant over O2- conductivity with1-2 orders of magnitude in the temperature range of 200-600 °C. It is suggested that theinterface in composite electrolyte supplies high conductive path for proton, while oxygenions are most probably transported by the SDC nano grain interiors. Finally, a tentativemodel “swing mechanism” was proposed for explanation of superior proton conduction. === QC 20100930