Summary: | In most application to date reinforced carbon fiber composites have been used in relatively smaller thickness, less than 10mm thick and essentially for carrying in-plane loads. As a result, design and testing procedures were developed which reflected the need to understand the in-plane response of the material. recently, engineers and designers have begun to use reinforced carbon fiber composites in thicker sections, where an understanding of the through-thickness response is of para-mount importance in designing reliable structures, particularly where the through-thickness strength has a controlling influence on the overall structural strength of the component. In this thesis tests will be done on carbon fiber non-crimp fabric (NCF) which will be loaded in compression and shear and elastic moduli and strength will be evaluated. In characterizing the through-thickness mechanical properties of a composite, the objective is to produce a state of stress in the test specimen which is uniform and will repeatedly measure the true properties with accuracy. In this study, specimens were machined from two blocks of thick (~20 mm) laminates of glass/epoxy and NCF carbon fiber infused with vinylester and tested in compression, and shear.
|