Recurrent neural networks for financial asset forecasting
The application of neural networks in finance has found renewed interest in the past few years. Neural networks have a proven capability of modeling non-linear relationships and have been proven widely successful in domains such as image and speech recognition. These favorable properties of the Neur...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
KTH, Matematisk statistik
2018
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229924 |
id |
ndltd-UPSALLA1-oai-DiVA.org-kth-229924 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-kth-2299242020-06-12T03:30:16ZRecurrent neural networks for financial asset forecastingengTegnér, GustafKTH, Matematisk statistik2018Computational MathematicsBeräkningsmatematikThe application of neural networks in finance has found renewed interest in the past few years. Neural networks have a proven capability of modeling non-linear relationships and have been proven widely successful in domains such as image and speech recognition. These favorable properties of the Neural Network make them an alluring choice of model when studying the financial markets. This thesis is concerned with investigating the use of recurrent neural networks for predicting future financial asset price movements on a set of futures contracts. To aid our research, we compare them to a set of simple feed-forward networks. We conduct further research into the various networks by considering different objective loss functions and how they affect our networks performance. This discussion is extended by considering multi-loss networks as well. The use of different loss functions sheds light on the importance of feature selection. We study a set of simple and complex features and how they affect our model. This aids us in further examining the difference between our networks. Lastly, we analyze of the gradients of our model to provide additional insight into the properties of our features. Our results show that recurrent networks provide superior predictive performance compared to feed-forward networks both when evaluating the Sharpe ratio and accuracy. The simple features show better results when optimizing for accuracy. When the network aims to maximize Sharpe, the complex features are preferred. The use of multi-loss networks proved successful when we consider achieving a high Sharpe ratio as our main objective. Our results show significant improved performance compared to a set of simple benchmarks. Through ensemble methods, we achieve a Sharpe ratio of 1.44 and an accuracy of 52.77% on the test set Tillämpningen av neurala nätverk i finans har fått förnyat intresse under de senaste åren. Neurala nätverk har en erkänd förmåga att kunna modellera icke-linjära förhållanden och har bevisligen visat sig användbara inom områden som bild och taligenkänning. Dessa egenskaper gör neurala nätverk till ett attraktivt val av model för att studera finansmarknaden Denna uppsats studerar användandet av rekurrenta neurala nätverk för pre-diktering av framtida prisrörelser av ett antal futures kontrakt. För att underlätta får analys jämför vi dessa nätverk med en uppsättning av enkla framåtkopplade nätverk. Vi dyker sedan djupare in i vår analys genom att jämföra olika målfunktioner för nätverken och hur de påverkar våra nätverks prestation. Vi utökar sedan den här diskussionen genom att också undersöka multi-förlust nätverk. Användandet av flera förlust funktioner visar på betydelsen av vårt urval av attribut från indatan. Vi studerar ett par simpla och komplexa attribut och hur de påverkar vår modell. Det hjälper oss att göra en ytterligare jämförelse mellan våra nätverk. Avslutningsvis så undersöker vi vår modells gradienter för att få en utökad förståelse över hur vår modell agerar med olika attribut. Resultaten visar på att rekurrenta nätverk utpresterar framåtkopplade nät-verk, både i uppgiften att maximera sharpe ration och precision. De enkla attributen visar på bättre resultat när nätverket optimeras för precision. När vi optimerar för att maximera Sharpe ration fungerar de komplexa attributen bättre. Tillämpningen av multi-förlust nätverk visade sig framgångsrik när vårt huvudmål var at maximera sharpe ration. Våra resultat visar på en signifikant ökad prestation av våra nätverk jämfört med ett par enkla benchmarks. Genom ensemble metoder uppnår vi en Sharpe ratio på 1.44 samt en precision på 52.77% på test datan. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229924TRITA-SCI-GRU ; 2018:262application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Computational Mathematics Beräkningsmatematik |
spellingShingle |
Computational Mathematics Beräkningsmatematik Tegnér, Gustaf Recurrent neural networks for financial asset forecasting |
description |
The application of neural networks in finance has found renewed interest in the past few years. Neural networks have a proven capability of modeling non-linear relationships and have been proven widely successful in domains such as image and speech recognition. These favorable properties of the Neural Network make them an alluring choice of model when studying the financial markets. This thesis is concerned with investigating the use of recurrent neural networks for predicting future financial asset price movements on a set of futures contracts. To aid our research, we compare them to a set of simple feed-forward networks. We conduct further research into the various networks by considering different objective loss functions and how they affect our networks performance. This discussion is extended by considering multi-loss networks as well. The use of different loss functions sheds light on the importance of feature selection. We study a set of simple and complex features and how they affect our model. This aids us in further examining the difference between our networks. Lastly, we analyze of the gradients of our model to provide additional insight into the properties of our features. Our results show that recurrent networks provide superior predictive performance compared to feed-forward networks both when evaluating the Sharpe ratio and accuracy. The simple features show better results when optimizing for accuracy. When the network aims to maximize Sharpe, the complex features are preferred. The use of multi-loss networks proved successful when we consider achieving a high Sharpe ratio as our main objective. Our results show significant improved performance compared to a set of simple benchmarks. Through ensemble methods, we achieve a Sharpe ratio of 1.44 and an accuracy of 52.77% on the test set === Tillämpningen av neurala nätverk i finans har fått förnyat intresse under de senaste åren. Neurala nätverk har en erkänd förmåga att kunna modellera icke-linjära förhållanden och har bevisligen visat sig användbara inom områden som bild och taligenkänning. Dessa egenskaper gör neurala nätverk till ett attraktivt val av model för att studera finansmarknaden Denna uppsats studerar användandet av rekurrenta neurala nätverk för pre-diktering av framtida prisrörelser av ett antal futures kontrakt. För att underlätta får analys jämför vi dessa nätverk med en uppsättning av enkla framåtkopplade nätverk. Vi dyker sedan djupare in i vår analys genom att jämföra olika målfunktioner för nätverken och hur de påverkar våra nätverks prestation. Vi utökar sedan den här diskussionen genom att också undersöka multi-förlust nätverk. Användandet av flera förlust funktioner visar på betydelsen av vårt urval av attribut från indatan. Vi studerar ett par simpla och komplexa attribut och hur de påverkar vår modell. Det hjälper oss att göra en ytterligare jämförelse mellan våra nätverk. Avslutningsvis så undersöker vi vår modells gradienter för att få en utökad förståelse över hur vår modell agerar med olika attribut. Resultaten visar på att rekurrenta nätverk utpresterar framåtkopplade nät-verk, både i uppgiften att maximera sharpe ration och precision. De enkla attributen visar på bättre resultat när nätverket optimeras för precision. När vi optimerar för att maximera Sharpe ration fungerar de komplexa attributen bättre. Tillämpningen av multi-förlust nätverk visade sig framgångsrik när vårt huvudmål var at maximera sharpe ration. Våra resultat visar på en signifikant ökad prestation av våra nätverk jämfört med ett par enkla benchmarks. Genom ensemble metoder uppnår vi en Sharpe ratio på 1.44 samt en precision på 52.77% på test datan. |
author |
Tegnér, Gustaf |
author_facet |
Tegnér, Gustaf |
author_sort |
Tegnér, Gustaf |
title |
Recurrent neural networks for financial asset forecasting |
title_short |
Recurrent neural networks for financial asset forecasting |
title_full |
Recurrent neural networks for financial asset forecasting |
title_fullStr |
Recurrent neural networks for financial asset forecasting |
title_full_unstemmed |
Recurrent neural networks for financial asset forecasting |
title_sort |
recurrent neural networks for financial asset forecasting |
publisher |
KTH, Matematisk statistik |
publishDate |
2018 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229924 |
work_keys_str_mv |
AT tegnergustaf recurrentneuralnetworksforfinancialassetforecasting |
_version_ |
1719319036497494016 |