Inside the Black Box: How to Explain Individual Predictions of a Machine Learning Model : How to automatically generate insights on predictive model outputs, and gain a better understanding on how the model predicts each individual data point.

Machine learning models are becoming more and more powerful and accurate, but their good predictions usually come with a high complexity. Depending on the situation, such a lack of interpretability can be an important and blocking issue. This is especially the case when trust is needed on the user s...

Full description

Bibliographic Details
Main Author: Beillevaire, Marc
Format: Others
Language:English
Published: KTH, Skolan för elektroteknik och datavetenskap (EECS) 2018
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229667
id ndltd-UPSALLA1-oai-DiVA.org-kth-229667
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-kth-2296672018-06-08T05:19:59ZInside the Black Box: How to Explain Individual Predictions of a Machine Learning Model : How to automatically generate insights on predictive model outputs, and gain a better understanding on how the model predicts each individual data point.engBeillevaire, MarcKTH, Skolan för elektroteknik och datavetenskap (EECS)2018Computer scienceMachine learningInterpretabilityComputer SystemsDatorsystemMachine learning models are becoming more and more powerful and accurate, but their good predictions usually come with a high complexity. Depending on the situation, such a lack of interpretability can be an important and blocking issue. This is especially the case when trust is needed on the user side in order to take a decision based on the model prediction. For instance, when an insurance company uses a machine learning algorithm in order to detect fraudsters: the company would trust the model to be based on meaningful variables before actually taking action and investigating on a particular individual. In this thesis, several explanation methods are described and compared on multiple datasets (text data, numerical), on classification and regression problems. Maskininlärningsmodellerna blir mer och mer kraftfulla och noggranna, men deras goda förutsägelser kommer ofta med en hög komplexitet. Beroende på situationen kan en sådan brist på tolkning vara ett viktigt och blockerande problem. Särskilt är det fallet när man behöver kunna lita på användarsidan för att fatta ett beslut baserat på modellprediktionen. Till exempel, ett försäkringsbolag kan använda en maskininlärningsalgoritm för att upptäcka bedrägerier, men företaget vill vara säkert på att modellen är baserad på meningsfulla variabler innan man faktiskt vidtar åtgärder och undersöker en viss individ. I denna avhandling beskrivs och förklaras flera förklaringsmetoder, på många dataset av typerna textdata och numeriska data, på klassificerings- och regressionsproblem. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229667TRITA-EECS-EX ; 2018:128application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic Computer science
Machine learning
Interpretability
Computer Systems
Datorsystem
spellingShingle Computer science
Machine learning
Interpretability
Computer Systems
Datorsystem
Beillevaire, Marc
Inside the Black Box: How to Explain Individual Predictions of a Machine Learning Model : How to automatically generate insights on predictive model outputs, and gain a better understanding on how the model predicts each individual data point.
description Machine learning models are becoming more and more powerful and accurate, but their good predictions usually come with a high complexity. Depending on the situation, such a lack of interpretability can be an important and blocking issue. This is especially the case when trust is needed on the user side in order to take a decision based on the model prediction. For instance, when an insurance company uses a machine learning algorithm in order to detect fraudsters: the company would trust the model to be based on meaningful variables before actually taking action and investigating on a particular individual. In this thesis, several explanation methods are described and compared on multiple datasets (text data, numerical), on classification and regression problems. === Maskininlärningsmodellerna blir mer och mer kraftfulla och noggranna, men deras goda förutsägelser kommer ofta med en hög komplexitet. Beroende på situationen kan en sådan brist på tolkning vara ett viktigt och blockerande problem. Särskilt är det fallet när man behöver kunna lita på användarsidan för att fatta ett beslut baserat på modellprediktionen. Till exempel, ett försäkringsbolag kan använda en maskininlärningsalgoritm för att upptäcka bedrägerier, men företaget vill vara säkert på att modellen är baserad på meningsfulla variabler innan man faktiskt vidtar åtgärder och undersöker en viss individ. I denna avhandling beskrivs och förklaras flera förklaringsmetoder, på många dataset av typerna textdata och numeriska data, på klassificerings- och regressionsproblem.
author Beillevaire, Marc
author_facet Beillevaire, Marc
author_sort Beillevaire, Marc
title Inside the Black Box: How to Explain Individual Predictions of a Machine Learning Model : How to automatically generate insights on predictive model outputs, and gain a better understanding on how the model predicts each individual data point.
title_short Inside the Black Box: How to Explain Individual Predictions of a Machine Learning Model : How to automatically generate insights on predictive model outputs, and gain a better understanding on how the model predicts each individual data point.
title_full Inside the Black Box: How to Explain Individual Predictions of a Machine Learning Model : How to automatically generate insights on predictive model outputs, and gain a better understanding on how the model predicts each individual data point.
title_fullStr Inside the Black Box: How to Explain Individual Predictions of a Machine Learning Model : How to automatically generate insights on predictive model outputs, and gain a better understanding on how the model predicts each individual data point.
title_full_unstemmed Inside the Black Box: How to Explain Individual Predictions of a Machine Learning Model : How to automatically generate insights on predictive model outputs, and gain a better understanding on how the model predicts each individual data point.
title_sort inside the black box: how to explain individual predictions of a machine learning model : how to automatically generate insights on predictive model outputs, and gain a better understanding on how the model predicts each individual data point.
publisher KTH, Skolan för elektroteknik och datavetenskap (EECS)
publishDate 2018
url http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229667
work_keys_str_mv AT beillevairemarc insidetheblackboxhowtoexplainindividualpredictionsofamachinelearningmodelhowtoautomaticallygenerateinsightsonpredictivemodeloutputsandgainabetterunderstandingonhowthemodelpredictseachindividualdatapoint
_version_ 1718693227155947520