Inside the Black Box: How to Explain Individual Predictions of a Machine Learning Model : How to automatically generate insights on predictive model outputs, and gain a better understanding on how the model predicts each individual data point.
Machine learning models are becoming more and more powerful and accurate, but their good predictions usually come with a high complexity. Depending on the situation, such a lack of interpretability can be an important and blocking issue. This is especially the case when trust is needed on the user s...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
KTH, Skolan för elektroteknik och datavetenskap (EECS)
2018
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229667 |
id |
ndltd-UPSALLA1-oai-DiVA.org-kth-229667 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-kth-2296672018-06-08T05:19:59ZInside the Black Box: How to Explain Individual Predictions of a Machine Learning Model : How to automatically generate insights on predictive model outputs, and gain a better understanding on how the model predicts each individual data point.engBeillevaire, MarcKTH, Skolan för elektroteknik och datavetenskap (EECS)2018Computer scienceMachine learningInterpretabilityComputer SystemsDatorsystemMachine learning models are becoming more and more powerful and accurate, but their good predictions usually come with a high complexity. Depending on the situation, such a lack of interpretability can be an important and blocking issue. This is especially the case when trust is needed on the user side in order to take a decision based on the model prediction. For instance, when an insurance company uses a machine learning algorithm in order to detect fraudsters: the company would trust the model to be based on meaningful variables before actually taking action and investigating on a particular individual. In this thesis, several explanation methods are described and compared on multiple datasets (text data, numerical), on classification and regression problems. Maskininlärningsmodellerna blir mer och mer kraftfulla och noggranna, men deras goda förutsägelser kommer ofta med en hög komplexitet. Beroende på situationen kan en sådan brist på tolkning vara ett viktigt och blockerande problem. Särskilt är det fallet när man behöver kunna lita på användarsidan för att fatta ett beslut baserat på modellprediktionen. Till exempel, ett försäkringsbolag kan använda en maskininlärningsalgoritm för att upptäcka bedrägerier, men företaget vill vara säkert på att modellen är baserad på meningsfulla variabler innan man faktiskt vidtar åtgärder och undersöker en viss individ. I denna avhandling beskrivs och förklaras flera förklaringsmetoder, på många dataset av typerna textdata och numeriska data, på klassificerings- och regressionsproblem. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229667TRITA-EECS-EX ; 2018:128application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Computer science Machine learning Interpretability Computer Systems Datorsystem |
spellingShingle |
Computer science Machine learning Interpretability Computer Systems Datorsystem Beillevaire, Marc Inside the Black Box: How to Explain Individual Predictions of a Machine Learning Model : How to automatically generate insights on predictive model outputs, and gain a better understanding on how the model predicts each individual data point. |
description |
Machine learning models are becoming more and more powerful and accurate, but their good predictions usually come with a high complexity. Depending on the situation, such a lack of interpretability can be an important and blocking issue. This is especially the case when trust is needed on the user side in order to take a decision based on the model prediction. For instance, when an insurance company uses a machine learning algorithm in order to detect fraudsters: the company would trust the model to be based on meaningful variables before actually taking action and investigating on a particular individual. In this thesis, several explanation methods are described and compared on multiple datasets (text data, numerical), on classification and regression problems. === Maskininlärningsmodellerna blir mer och mer kraftfulla och noggranna, men deras goda förutsägelser kommer ofta med en hög komplexitet. Beroende på situationen kan en sådan brist på tolkning vara ett viktigt och blockerande problem. Särskilt är det fallet när man behöver kunna lita på användarsidan för att fatta ett beslut baserat på modellprediktionen. Till exempel, ett försäkringsbolag kan använda en maskininlärningsalgoritm för att upptäcka bedrägerier, men företaget vill vara säkert på att modellen är baserad på meningsfulla variabler innan man faktiskt vidtar åtgärder och undersöker en viss individ. I denna avhandling beskrivs och förklaras flera förklaringsmetoder, på många dataset av typerna textdata och numeriska data, på klassificerings- och regressionsproblem. |
author |
Beillevaire, Marc |
author_facet |
Beillevaire, Marc |
author_sort |
Beillevaire, Marc |
title |
Inside the Black Box: How to Explain Individual Predictions of a Machine Learning Model : How to automatically generate insights on predictive model outputs, and gain a better understanding on how the model predicts each individual data point. |
title_short |
Inside the Black Box: How to Explain Individual Predictions of a Machine Learning Model : How to automatically generate insights on predictive model outputs, and gain a better understanding on how the model predicts each individual data point. |
title_full |
Inside the Black Box: How to Explain Individual Predictions of a Machine Learning Model : How to automatically generate insights on predictive model outputs, and gain a better understanding on how the model predicts each individual data point. |
title_fullStr |
Inside the Black Box: How to Explain Individual Predictions of a Machine Learning Model : How to automatically generate insights on predictive model outputs, and gain a better understanding on how the model predicts each individual data point. |
title_full_unstemmed |
Inside the Black Box: How to Explain Individual Predictions of a Machine Learning Model : How to automatically generate insights on predictive model outputs, and gain a better understanding on how the model predicts each individual data point. |
title_sort |
inside the black box: how to explain individual predictions of a machine learning model : how to automatically generate insights on predictive model outputs, and gain a better understanding on how the model predicts each individual data point. |
publisher |
KTH, Skolan för elektroteknik och datavetenskap (EECS) |
publishDate |
2018 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229667 |
work_keys_str_mv |
AT beillevairemarc insidetheblackboxhowtoexplainindividualpredictionsofamachinelearningmodelhowtoautomaticallygenerateinsightsonpredictivemodeloutputsandgainabetterunderstandingonhowthemodelpredictseachindividualdatapoint |
_version_ |
1718693227155947520 |