Summary: | This report investigates if it is possible to use the Indian Buffet Process (IBP), a stochastic process that defines a probability distribution, as part of a recommendation system. The report focuses on recommendation systems where one type of object, for instance movies, is recommended to another type of object, for instance users. A concept of performing link prediction with IBP is presented, along with a method for performing inference. Three papers that are related to the subject are presented and their results are analyzed together with additional experiments on an implementation of the IBP. The report arrives at the conclusion that it is possible to use IBP in a recommendation system when recommending one object to another. In order to use IBP priors in a recommendation system which include real-life datasets, the paper suggests the use of a coupled version of the IBP model and if possible perform inference with a parallel Gibbs sampling. === Denna rapport undersöker om det är möjligt att använda Indian Buffet Process (IBP), en stokatisk process som definierar en sannolikhetsfördelning, som en del av ett rekommendationssystem. Rapporten fokuserar på rekommendationssystem där en sorts objekt, exempelvis filmer, rekommenderas till en annan sorts objekt, exempelvis användare. Ett sätt att förutse länkar, link prediction, mellan olika objekt med hjälp av IBP presenteras tillsammans med en metod för att dra statistiska slutsatser, inference. Tre rapporter som är relaterade till ämnet presenteras och deras resultat analyseras tillsammans med ytterligare experiment på en implementation av IBP. Rapporten drar slutsatsen att det är möjligt att använda IBP i ett rekommendationssystem då systemet rekommenderar ett objekt till ett annat objekt. Rapporten föreslår en kopplad version av IBP för att kunna använda IBP i ett rekommendationssystem som arbetar på riktigt data samt att inference ska utföras med en parallell Gibbs sampling.
|