Embedded Vision Machine Learning on Embedded Devices for Image classification in Industrial Internet of things
Because of Machine Learning, machines have become extremely good at image classification in near real time. With using significant training data, powerful machines can be trained to recognize images as good as any human would. Till now the norm has been to have pictures sent to a server and have the...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
KTH, Skolan för informations- och kommunikationsteknik (ICT)
2017
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-219622 |
id |
ndltd-UPSALLA1-oai-DiVA.org-kth-219622 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Machine Learning Image classification Embedded devices Maskininlärning Bildklassificering Inbyggda system Computer Sciences Datavetenskap (datalogi) Embedded Systems Inbäddad systemteknik |
spellingShingle |
Machine Learning Image classification Embedded devices Maskininlärning Bildklassificering Inbyggda system Computer Sciences Datavetenskap (datalogi) Embedded Systems Inbäddad systemteknik Parvez, Bilal Embedded Vision Machine Learning on Embedded Devices for Image classification in Industrial Internet of things |
description |
Because of Machine Learning, machines have become extremely good at image classification in near real time. With using significant training data, powerful machines can be trained to recognize images as good as any human would. Till now the norm has been to have pictures sent to a server and have the server recognize them. With increasing number of sensors the trend is moving towards edge computing to curb the increasing rate of data transfer and communication bottlenecks. The idea is to do the processing locally or as close to the sensor as possible and then only transmit actionable data to the server. While, this does solve plethora of communication problems, specially in industrial settings, it creates a new problem. The sensors need to do this computationally intensive image classification which is a challenge for embedded/wearable devices, due to their resource constrained nature. This thesis analyzes Machine Learning algorithms and libraries from the motivation of porting image classifiers to embedded devices. This includes, comparing different supervised Machine Learning approaches to image classification and figuring out which are most suited for being ported to embedded devices. Taking a step forward in making the process of testing and implementing Machine Learning algorithms as easy as their desktop counterparts. The goal is to ease the process of porting new image recognition and classification algorithms on a host of different embedded devices and to provide motivations behind design decisions. The final proposal goes through all design considerations and implements a prototype that is hardware independent. Which can be used as a reference for designing and then later porting of Machine Learning classifiers to embedded devices. === Maskiner har blivit extremt bra på bildklassificering i nära realtid. På grund av maskininlärning med kraftig träningsdata, kan kraftfulla maskiner utbildas för att känna igen bilder så bra som alla människor skulle. Hittills har trenden varit att få bilderna skickade till en server och sedan få servern att känna igen bilderna. Men eftersom sensorerna ökar i antal, går trenden mot så kallad "edge computing" för att stryka den ökande graden av dataöverföring och kommunikationsflaskhalsar. Tanken är att göra bearbetningen lokalt eller så nära sensorn som möjligt och sedan bara överföra aktiv data till servern. Samtidigt som detta löser överflöd av kommunikationsproblem, speciellt i industriella inställningar, skapar det ett nytt problem. Sensorerna måste kunna göra denna beräkningsintensiva bildklassificering ombord vilket speciellt är en utmaning för inbyggda system och bärbara enheter, på grund av sin resursbegränsade natur. Denna avhandling analyserar maskininlärningsalgoritmer och biblioteken från motivationen att portera generiska bildklassificatorer till inbyggda system. Att jämföra olika övervakade maskininlärningsmetoder för bildklassificering, utreda vilka som är mest lämpade för att bli porterade till inbyggda system, för att göra processen att testa och implementera maskininlärningsalgoritmer lika enkelt som sina skrivbordsmodeller. Målet är att underlätta processen för att portera nya bildigenkännings och klassificeringsalgoritmer på en mängd olika inbyggda system och att ge motivation bakom designbeslut som tagits och för att beskriva det snabbaste sättet att skapa en prototyp med "embedded vision design". Det slutliga förslaget går igenom all hänsyn till konstruktion och implementerar en prototyp som är maskinvaruoberoende och kan användas för snabb framtagning av prototyper och sedan senare överföring av maskininlärningsklassificatorer till inbyggda system. |
author |
Parvez, Bilal |
author_facet |
Parvez, Bilal |
author_sort |
Parvez, Bilal |
title |
Embedded Vision Machine Learning on Embedded Devices for Image classification in Industrial Internet of things |
title_short |
Embedded Vision Machine Learning on Embedded Devices for Image classification in Industrial Internet of things |
title_full |
Embedded Vision Machine Learning on Embedded Devices for Image classification in Industrial Internet of things |
title_fullStr |
Embedded Vision Machine Learning on Embedded Devices for Image classification in Industrial Internet of things |
title_full_unstemmed |
Embedded Vision Machine Learning on Embedded Devices for Image classification in Industrial Internet of things |
title_sort |
embedded vision machine learning on embedded devices for image classification in industrial internet of things |
publisher |
KTH, Skolan för informations- och kommunikationsteknik (ICT) |
publishDate |
2017 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-219622 |
work_keys_str_mv |
AT parvezbilal embeddedvisionmachinelearningonembeddeddevicesforimageclassificationinindustrialinternetofthings |
_version_ |
1718609269058699264 |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-kth-2196222018-01-14T05:10:29ZEmbedded Vision Machine Learning on Embedded Devices for Image classification in Industrial Internet of thingsengParvez, BilalKTH, Skolan för informations- och kommunikationsteknik (ICT)2017Machine LearningImage classificationEmbedded devicesMaskininlärningBildklassificeringInbyggda systemComputer SciencesDatavetenskap (datalogi)Embedded SystemsInbäddad systemteknikBecause of Machine Learning, machines have become extremely good at image classification in near real time. With using significant training data, powerful machines can be trained to recognize images as good as any human would. Till now the norm has been to have pictures sent to a server and have the server recognize them. With increasing number of sensors the trend is moving towards edge computing to curb the increasing rate of data transfer and communication bottlenecks. The idea is to do the processing locally or as close to the sensor as possible and then only transmit actionable data to the server. While, this does solve plethora of communication problems, specially in industrial settings, it creates a new problem. The sensors need to do this computationally intensive image classification which is a challenge for embedded/wearable devices, due to their resource constrained nature. This thesis analyzes Machine Learning algorithms and libraries from the motivation of porting image classifiers to embedded devices. This includes, comparing different supervised Machine Learning approaches to image classification and figuring out which are most suited for being ported to embedded devices. Taking a step forward in making the process of testing and implementing Machine Learning algorithms as easy as their desktop counterparts. The goal is to ease the process of porting new image recognition and classification algorithms on a host of different embedded devices and to provide motivations behind design decisions. The final proposal goes through all design considerations and implements a prototype that is hardware independent. Which can be used as a reference for designing and then later porting of Machine Learning classifiers to embedded devices. Maskiner har blivit extremt bra på bildklassificering i nära realtid. På grund av maskininlärning med kraftig träningsdata, kan kraftfulla maskiner utbildas för att känna igen bilder så bra som alla människor skulle. Hittills har trenden varit att få bilderna skickade till en server och sedan få servern att känna igen bilderna. Men eftersom sensorerna ökar i antal, går trenden mot så kallad "edge computing" för att stryka den ökande graden av dataöverföring och kommunikationsflaskhalsar. Tanken är att göra bearbetningen lokalt eller så nära sensorn som möjligt och sedan bara överföra aktiv data till servern. Samtidigt som detta löser överflöd av kommunikationsproblem, speciellt i industriella inställningar, skapar det ett nytt problem. Sensorerna måste kunna göra denna beräkningsintensiva bildklassificering ombord vilket speciellt är en utmaning för inbyggda system och bärbara enheter, på grund av sin resursbegränsade natur. Denna avhandling analyserar maskininlärningsalgoritmer och biblioteken från motivationen att portera generiska bildklassificatorer till inbyggda system. Att jämföra olika övervakade maskininlärningsmetoder för bildklassificering, utreda vilka som är mest lämpade för att bli porterade till inbyggda system, för att göra processen att testa och implementera maskininlärningsalgoritmer lika enkelt som sina skrivbordsmodeller. Målet är att underlätta processen för att portera nya bildigenkännings och klassificeringsalgoritmer på en mängd olika inbyggda system och att ge motivation bakom designbeslut som tagits och för att beskriva det snabbaste sättet att skapa en prototyp med "embedded vision design". Det slutliga förslaget går igenom all hänsyn till konstruktion och implementerar en prototyp som är maskinvaruoberoende och kan användas för snabb framtagning av prototyper och sedan senare överföring av maskininlärningsklassificatorer till inbyggda system. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-219622TRITA-ICT-EX ; 2017:177application/pdfinfo:eu-repo/semantics/openAccess |