Syna: Emotion Recognition based on Spatio-Temporal Machine Learning

The analysis of emotions in humans is a field that has been studied for centuries. Through the last decade, multiple approaches towards automatic emotion recognition have been developed to tackle the task of making this analysis autonomous. More specifically, facial expressions in the form of Action...

Full description

Bibliographic Details
Main Author: Shahrokhian, Daniyal
Format: Others
Language:English
Published: KTH, Skolan för informations- och kommunikationsteknik (ICT) 2017
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215724
id ndltd-UPSALLA1-oai-DiVA.org-kth-215724
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-kth-2157242018-01-14T05:11:08ZSyna: Emotion Recognition based on Spatio-Temporal Machine LearningengShahrokhian, DaniyalKTH, Skolan för informations- och kommunikationsteknik (ICT)2017Emotion recognitionspatio-temporal machine learningKänsloigenkänningspatio-temporal maskininlärningComputer SciencesDatavetenskap (datalogi)The analysis of emotions in humans is a field that has been studied for centuries. Through the last decade, multiple approaches towards automatic emotion recognition have been developed to tackle the task of making this analysis autonomous. More specifically, facial expressions in the form of Action Units have been considered until now the most efficient way to recognize emotions. In recent years, applying machine learning for this task has shown outstanding improvements in the accuracy of the solutions. Through this technique, the features can now be automatically learned from the training data, instead of relying on expert domain knowledge and hand-crafted rules. In this thesis, I present Syna and DeepSyna, two models capable of classifying emotional expressions by using both spatial and temporal features. The experimental results demonstrate the effectiveness of Syna in constrained environments, while there is still room for improvement in both constrained and in-the-wild settings. DeepSyna, while addressing this problem, on the other hand suffers from data scarcity and irrelevant transfer learning, which can be solved by future work. Mänsklig känsloigenkänning har studerats i århundraden. Det senaste årtiondet har mängder av tillvägagångssätt för automatiska processer studerats, för att möjliggöra autonomi; mer specifikt så har ansiktsuttryck i form av Action Units ansetts vara mest effektiva. Maskininlärning har dock nyligen visat att enorma framsteg är möjliga vad gäller bra lösningar på problemen. Så kallade features kan nu automatiskt läras in från träningsdata, även utan expertkunskap och heuristik. Jag presenterar här Syna och DeepSyna, två modeller för ändamålet som använder både spatiala och temporala features. Experiment demonstrerar Synas effektivitet i vissa begränsade omgivningar, medan mycket lämnas att önska vad gäller generella sådana. DeepSyna löser detta men lider samtidigt av databristproblem och onödig så kallad transfer learning, vilket här lämnas till framtida arbete. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215724TRITA-ICT-EX ; 2017:139application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic Emotion recognition
spatio-temporal machine learning
Känsloigenkänning
spatio-temporal maskininlärning
Computer Sciences
Datavetenskap (datalogi)
spellingShingle Emotion recognition
spatio-temporal machine learning
Känsloigenkänning
spatio-temporal maskininlärning
Computer Sciences
Datavetenskap (datalogi)
Shahrokhian, Daniyal
Syna: Emotion Recognition based on Spatio-Temporal Machine Learning
description The analysis of emotions in humans is a field that has been studied for centuries. Through the last decade, multiple approaches towards automatic emotion recognition have been developed to tackle the task of making this analysis autonomous. More specifically, facial expressions in the form of Action Units have been considered until now the most efficient way to recognize emotions. In recent years, applying machine learning for this task has shown outstanding improvements in the accuracy of the solutions. Through this technique, the features can now be automatically learned from the training data, instead of relying on expert domain knowledge and hand-crafted rules. In this thesis, I present Syna and DeepSyna, two models capable of classifying emotional expressions by using both spatial and temporal features. The experimental results demonstrate the effectiveness of Syna in constrained environments, while there is still room for improvement in both constrained and in-the-wild settings. DeepSyna, while addressing this problem, on the other hand suffers from data scarcity and irrelevant transfer learning, which can be solved by future work. === Mänsklig känsloigenkänning har studerats i århundraden. Det senaste årtiondet har mängder av tillvägagångssätt för automatiska processer studerats, för att möjliggöra autonomi; mer specifikt så har ansiktsuttryck i form av Action Units ansetts vara mest effektiva. Maskininlärning har dock nyligen visat att enorma framsteg är möjliga vad gäller bra lösningar på problemen. Så kallade features kan nu automatiskt läras in från träningsdata, även utan expertkunskap och heuristik. Jag presenterar här Syna och DeepSyna, två modeller för ändamålet som använder både spatiala och temporala features. Experiment demonstrerar Synas effektivitet i vissa begränsade omgivningar, medan mycket lämnas att önska vad gäller generella sådana. DeepSyna löser detta men lider samtidigt av databristproblem och onödig så kallad transfer learning, vilket här lämnas till framtida arbete.
author Shahrokhian, Daniyal
author_facet Shahrokhian, Daniyal
author_sort Shahrokhian, Daniyal
title Syna: Emotion Recognition based on Spatio-Temporal Machine Learning
title_short Syna: Emotion Recognition based on Spatio-Temporal Machine Learning
title_full Syna: Emotion Recognition based on Spatio-Temporal Machine Learning
title_fullStr Syna: Emotion Recognition based on Spatio-Temporal Machine Learning
title_full_unstemmed Syna: Emotion Recognition based on Spatio-Temporal Machine Learning
title_sort syna: emotion recognition based on spatio-temporal machine learning
publisher KTH, Skolan för informations- och kommunikationsteknik (ICT)
publishDate 2017
url http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215724
work_keys_str_mv AT shahrokhiandaniyal synaemotionrecognitionbasedonspatiotemporalmachinelearning
_version_ 1718609813693267968